The BKM criterion for the 3D Navier-Stokes equations via two velocity components

被引:37
作者
Dong, Bo-Qing [1 ]
Zhang, Zhifei [2 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230039, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Navier-Stokes equations; Beale-Kato-Majda criterion; WEAK SOLUTIONS; REGULARITY CRITERION;
D O I
10.1016/j.nonrwa.2009.07.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the study of the regularity criterion of Leray-Hopf weak solutions to the 3D Navier-Stokes equations, the Beale-Kato-Majda type criterion is obtained in terms of the horizontal derivatives of the two velocity components integral(T)(0) parallel to del(h (u) over tilde (S))parallel to(B over dot infinity,infinity 0) ds < infinity, <(u)over tilde> = (u(1), u(2), 0), del(h)(u) over tilde = (partial derivative(1)(u) over tilde, partial derivative(2)(u) over tilde, 0). (C) 2010 Published by Elsevier Ltd
引用
收藏
页码:2415 / 2421
页数:7
相关论文
共 25 条
[1]  
[Anonymous], 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals
[2]  
[Anonymous], 2010, Theory of Function Spaces
[3]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[4]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[5]   Regularity Criteria for the Three-dimensional Navier-Stokes Equations [J].
Cao, Chongsheng ;
Titi, Edriss S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) :2643-2661
[6]  
Chemin J. -Y., 1998, Perfect Incompressible Fluids
[7]   Homogeneity Criterion for the Navier-Stokes Equations in the Whole Spaces [J].
Chen, Zhi Min ;
Xin, Zhouping .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (02) :152-182
[8]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[9]   Regularity criterion of weak solutions to the 3D Navier-Stokes equations via two velocity components [J].
Dong, Bo-Qing ;
Chen, Zhi-Min .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) :1-10
[10]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315