A local moment approach to the Anderson model

被引:108
|
作者
Logan, DE [1 ]
Eastwood, MP [1 ]
Tusch, MA [1 ]
机构
[1] Univ Oxford, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England
关键词
D O I
10.1088/0953-8984/10/12/009
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A theory is developed for the single-particle spectra of the symmetric Anderson model, in which local moments are introduced explicitly from the outset. Dynamical coupling of single-particle processes to low-energy spin-dip excitations leads, within the framework of a two-self-energy description, to a theory in which both low-and high-energy spectral features are simultaneously captured, while correctly preserving Fermi liquid behaviour at low energies. The atomic limit, non-interacting limit and strong-coupling behaviour of the spectrum are each recovered. For strong coupling in particular, both the exponential asymptotics of the Kondo resonance and concomitant many-body broadening of the Hubbard satellite bands are shown to arise naturally within the present approach.
引用
收藏
页码:2673 / 2700
页数:28
相关论文
共 50 条
  • [21] Local-moment formation in the periodic Anderson model with superconducting correlations -: art. no. 012503
    Araújo, MAN
    Peres, NMR
    Sacramento, PD
    PHYSICAL REVIEW B, 2002, 65 (01) : 125031 - 125034
  • [22] MOMENT-CONSERVING DECOUPLING SCHEME IN THE ANDERSON MODEL
    CHEUNG, CY
    PHYSICS LETTERS A, 1979, 70 (5-6) : 467 - 468
  • [23] Moment closure of the relativistic Anderson and Witting model equation
    Cercignani, C
    Kremer, GM
    PHYSICA A, 2001, 290 (1-2): : 192 - 202
  • [24] Local holon and spinon in the Anderson model
    Kawakami, N.
    Okiji, A.
    Physica B: Condensed Matter, 1990, 165-66 (01) : 391 - 392
  • [25] LOCAL HOLON AND SPINON IN THE ANDERSON MODEL
    KAWAKAMI, N
    OKIJI, A
    PHYSICA B, 1990, 165 : 391 - 392
  • [26] APPROXIMATE MAPPING OF THE 2-IMPURITY SYMMETRIC ANDERSON MODEL IN THE LOCAL-MOMENT REGIME TO A CLASSICAL PROBLEM
    CHAKRAVARTY, S
    HIRSCH, JE
    PHYSICAL REVIEW B, 1982, 25 (05) : 3273 - 3282
  • [27] The hyperbolic Anderson model: moment estimates of the Malliavin derivatives and applications
    Balan, Raluca M.
    Nualart, David
    Quer-Sardanyons, Lluis
    Zheng, Guangqu
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2022, 10 (03): : 757 - 827
  • [28] The hyperbolic Anderson model: moment estimates of the Malliavin derivatives and applications
    Raluca M. Balan
    David Nualart
    Lluís Quer-Sardanyons
    Guangqu Zheng
    Stochastics and Partial Differential Equations: Analysis and Computations, 2022, 10 : 757 - 827
  • [29] EFFECT OF ORBITAL DEGENERACY ON ANDERSON MODEL OF A LOCALIZED MOMENT IN A METAL
    PARMENTER, RH
    PHYSICAL REVIEW B, 1973, 8 (03) : 1273 - 1275
  • [30] SPINLESS ANDERSON MODEL WITH A LOCAL PHONON MODE
    KOWALSKA, J
    ZIELINSKI, J
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1983, 120 (01): : 99 - 104