Synergistic Effect of Co/La in Oxygen Vacancy Rich Ternary CoAlLa Layered Double Hydroxide with Enhanced Reductive Sites for Selective Photoreduction of CO2 to CH4

被引:41
|
作者
Khan, Azmat Ali [1 ,2 ]
Tahir, Muhammad [1 ]
机构
[1] Univ Teknol Malaysia, Sch Chem & Energy Engn, Chem React Engn Grp CREG, Johor Baharu 81310, Johor, Malaysia
[2] Balochistan Univ Informat Technol Engn & Manageme, Quetta, Pakistan
关键词
PHOTOCATALYTIC REDUCTION; PHOTOLUMINESCENCE PROPERTIES; THERMAL-DECOMPOSITION; EFFICIENT; NANORODS; AL; HETEROJUNCTION; EVOLUTION; LDH; ZN;
D O I
10.1021/acs.energyfuels.1c00671
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Developing a convenient ternary layered double hydroxide (LDH) semiconductor for highly active photocatalytic reduction is necessary for solving the energy crisis and environmental pollution. In this work, a highly active ternary CoAlLa-LDH was formed through inducing La3+ to enhance coordinatively unsaturated metals centers for development of reductive sites that resulted in improvement of photogenerated charge carrier separation. It was demonstrated that the ratio of cations between the Co/Al/La-LDHs greatly determined the LDH structure for photocatalytic activity toward CO2 reduction. The increase of La content resulted in destruction of LDH structure with lower photoactivity for CO2 reduction. The rate of CO and CH4 evolution in Co2Al1-LDH was about 15.3 and 9.2 mu mol g(cat)(-1) h(-1), much higher than Co3Al1-LDH and Co4Al1-LDH, which indicates that the Co2Al1-LDH among CoAl-LDHs is a promising photocatalyst with high photocatalytic activity in CO2 reduction to CO and CH4. The Co/Al/La molar ratios were optimized to be 2:0.95:0.05 with a production rate of 25.5 mu mol g(cat)(-1) h(-1) and 21.80 mu mol g(cat)(-1) h(-1) for CH4 and CO, respectively. A more interesting finding is that the selectivity of CH4 was raised to 53.93% as compared to 46.10% for CO. Besides, good stability was observed due to the presence of the intact hexagonal nanosheet structure, which was sustained in multiple cycles without obvious deactivation. The highest activity was due to the proper weaving of lanthanum into the framework of LDH. This work demonstrates a facile synthetic method of rationally doping La transition-metal to develop new photocatalyst with remarkable performance in CO2 reduction.
引用
收藏
页码:8922 / 8943
页数:22
相关论文
共 50 条
  • [1] Oxygen Vacancy Drives CoO Atomic Layers Directional Photoreduction of CO2 to CH4
    Chen, Kui
    Wang, Qiuping
    Xie, Hua
    Yu, Jing
    Zhu, Lixin
    Wu, Bingshan
    Xu, Xiaoliang
    SOLAR RRL, 2023, 7 (13)
  • [2] Engineering Active Ni Sites in Ternary Layered Double Hydroxide Nanosheets for a Highly Selective Photoreduction of CO2 to CH4 under Irradiation above 500 nm
    Hao, Xiaojie
    Tan, Ling
    Xu, Yanqi
    Wang, Zelin
    Wang, Xian
    Bai, Sha
    Ning, Chenjun
    Zhao, Jingwen
    Zhao, Yufei
    Song, Yu-Fei
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (07) : 3008 - 3015
  • [3] New type ternary NiAlCe layered double hydroxide photocatalyst for efficient visible-light photoreduction of CO2 into CH4
    Li, Ji
    Yang, Y. J.
    MATERIALS RESEARCH EXPRESS, 2018, 5 (02):
  • [4] Metal-oxygen hybridization in Agcluster/TiO2 for selective CO2 photoreduction to CH4
    Ban, Chaogang
    Wang, Yang
    Ma, Jiangping
    Feng, Yajie
    Wang, Xiaoxing
    Qin, Shijiang
    Jing, Shaojie
    Duan, Youyu
    Zhang, Min
    Tao, Xiaoping
    Gan, Liyong
    Zhou, Xiaoyuan
    CHEMICAL ENGINEERING JOURNAL, 2024, 488
  • [5] Effect of Au surface plasmon nanoparticles on the selective CO2 photoreduction to CH4
    Collado, L.
    Reynal, A.
    Coronado, J. M.
    Serrano, D. P.
    Durrant, J. R.
    de la Pena O'Shea, V. A.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 178 : 177 - 185
  • [6] Defect engineering of NiCo-layered double hydroxide hollow nanocages for highly selective photoreduction of CO2 to CH4 with suppressing H2 evolution
    An, Jiamin
    Shen, Tianyang
    Chang, Wen
    Zhao, Yufei
    Qi, Bo
    Song, Yu-Fei
    INORGANIC CHEMISTRY FRONTIERS, 2021, 8 (04) : 996 - 1004
  • [7] Effect of Trivalent Metal Cations in Layered Double Perovskites on Highly Selective CO2 Photoreduction to CO
    Chen, Wei
    Huang, Yanyi
    Wu, Daofu
    Ran, Hongmei
    Liu, Yichen
    Gao, Liqin
    Zhang, Wenxia
    Huang, Qiang
    Tang, Xiaosheng
    INORGANIC CHEMISTRY, 2025,
  • [8] Selective photothermal CO2 reduction to CO, CH4, alkanes, alkenes over bimetallic alloy catalysts derived from layered double hydroxide nanosheets
    Zhao, Jiaqing
    Shi, Run
    Waterhouse, Geoffrey I. N.
    Zhang, Tierui
    NANO ENERGY, 2022, 102
  • [9] Recent progress of cocatalysts loaded on carbon nitride for selective photoreduction of CO2 to CH4
    Guo, Rui-Tang
    Zhang, Zhen-Rui
    Xia, Cheng
    Li, Chu-Fan
    Pan, Wei-Guo
    NANOSCALE, 2023, 15 (19) : 8548 - 8577
  • [10] The functionality of surface hydroxyls on selective CH4 generation from photoreduction of CO2 over SiC nanosheets
    Han, Cheng
    Lei, Yongpeng
    Wang, Bing
    Wu, Chunzhi
    Zhang, Xiaoshan
    Shen, Shujin
    Sun, Lian
    Tian, Qiong
    Feng, Qingguo
    Wang, Yingde
    CHEMICAL COMMUNICATIONS, 2019, 55 (11) : 1572 - 1575