The Primacy of High B-Value 3T-DWI Radiomics in the Prediction of Clinically Significant Prostate Cancer

被引:18
作者
Bevilacqua, Alessandro [1 ,2 ]
Mottola, Margherita [2 ,3 ]
Ferroni, Fabio [4 ]
Rossi, Alice [4 ]
Gavelli, Giampaolo [4 ]
Barone, Domenico [4 ]
机构
[1] Univ Bologna, Dept Comp Sci & Engn DISI, Viale Risorgimento 2, I-40136 Bologna, Italy
[2] Univ Bologna, Adv Res Ctr Elect Syst ARCES, Via Toffano 2-2, I-40125 Bologna, Italy
[3] Univ Bologna, Dept Elect Elect & Informat Engn Guglielmo Marcon, Viale Risorgimento 2, I-40136 Bologna, Italy
[4] IRCCS Ist Romagnolo Studio Tumori IRST Dino Amado, Via Piero Maroncelli 40, I-47014 Meldola, Italy
关键词
prostate cancer; radiomics; machine learning; tumor staging; cancer heterogeneity; image processing; MULTI-PARAMETRIC MRI; BLOOD-FLOW VALUES; BIOPSY; LESIONS;
D O I
10.3390/diagnostics11050739
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Predicting clinically significant prostate cancer (csPCa) is crucial in PCa management. 3T-magnetic resonance (MR) systems may have a novel role in quantitative imaging and early csPCa prediction, accordingly. In this study, we develop a radiomic model for predicting csPCa based solely on native b2000 diffusion weighted imaging (DWIb2000) and debate the effectiveness of apparent diffusion coefficient (ADC) in the same task. In total, 105 patients were retrospectively enrolled between January-November 2020, with confirmed csPCa or ncsPCa based on biopsy. DWIb2000 and ADC images acquired with a 3T-MRI were analyzed by computing 84 local first-order radiomic features (RFs). Two predictive models were built based on DWIb2000 and ADC, separately. Relevant RFs were selected through LASSO, a support vector machine (SVM) classifier was trained using repeated 3-fold cross validation (CV) and validated on a holdout set. The SVM models rely on a single couple of uncorrelated RFs (rho < 0.15) selected through Wilcoxon rank-sum test (p <= 0.05) with Holm-Bonferroni correction. On the holdout set, while the ADC model yielded AUC = 0.76 (95% CI, 0.63-0.96), the DWIb2000 model reached AUC = 0.84 (95% CI, 0.63-0.90), with specificity = 75%, sensitivity = 90%, and informedness = 0.65. This study establishes the primary role of 3T-DWIb2000 in PCa quantitative analyses, whilst ADC can remain the leading sequence for detection.
引用
收藏
页数:15
相关论文
共 33 条
[1]   Optimal High b-Value for Diffusion Weighted MRI in Diagnosing High Risk Prostate Cancers in the Peripheral Zone [J].
Agarwal, Harsh K. ;
Mertan, Francesca V. ;
Sankineni, Sandeep ;
Bernardo, Marcelino ;
Senegas, Julien ;
Keupp, Jochen ;
Daar, Dagane ;
Merino, Maria ;
Wood, Bradford J. ;
Pinto, Peter A. ;
Choyke, Peter L. ;
Turkbey, Baris .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 45 (01) :125-131
[2]   Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study [J].
Ahmed, Hashim U. ;
Bosaily, Ahmed El-Shater ;
Brown, Louise C. ;
Gabe, Rhian ;
Kaplan, Richard ;
Parmar, Mahesh K. ;
Collaco-Moraes, Yolanda ;
Ward, Katie ;
Hindley, Richard G. ;
Freeman, Alex ;
Kirkham, Alex P. ;
Oldroyd, Robert ;
Parker, Chris ;
Emberton, Mark .
LANCET, 2017, 389 (10071) :815-822
[3]   Apparent Diffusion Coefficient (ADC) Ratio Versus Conventional ADC for Detecting Clinically Significant Prostate Cancer With 3-T MRI [J].
Bajgiran, Amirhossein Mohammadian ;
Mirak, Sohrab Afshari ;
Sung, Kyunghyun ;
Sisk, Anthony E. ;
Reiter, Robert E. ;
Raman, Steven S. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 213 (03) :W134-W142
[4]   Differentiation of prostate cancer lesions with high and with low Gleason score by diffusion-weighted MRI [J].
Barbieri, Sebastiano ;
Bronnimann, Michael ;
Boxler, Silvan ;
Vermathen, Peter ;
Thoeny, Harriet C. .
EUROPEAN RADIOLOGY, 2017, 27 (04) :1547-1555
[5]   Pathological Upgrading and Up Staging With Immediate Repeat Biopsy in Patients Eligible for Active Surveillance [J].
Berglund, Ryan K. ;
Masterson, Timothy A. ;
Vora, Kinjal C. ;
Eggener, Scott E. ;
Eastham, James A. ;
Guillonneau, Bertrand D. .
JOURNAL OF UROLOGY, 2008, 180 (05) :1964-1967
[6]   A novel approach for semi-quantitative assessment of reliability of blood flow values in DCE-CT perfusion [J].
Bevilacqua, Alessandro ;
Barone, Domenico ;
Baiocco, Serena ;
Gavelli, Giampaolo .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 31 :257-264
[7]   Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values [J].
Bonekamp, David ;
Kohl, Simon ;
Wiesenfarth, Manuel ;
Schelb, Patrick ;
Radtke, Jan Philipp ;
Goetz, Michael ;
Kickingereder, Philipp ;
Yaqubi, Kaneschka ;
Hitthaler, Bertram ;
Gaehlert, Nils ;
Kuder, Tristan Anselm ;
Deister, Fenja ;
Freitag, Martin ;
Hohenfellner, Markus ;
Hadaschik, Boris A. ;
Schlemmer, Heinz-Peter ;
Maier-Hein, Klaus H. .
RADIOLOGY, 2018, 289 (01) :128-137
[8]   Changes in Epithelium, Stroma, and Lumen Space Correlate More Strongly with Gleason Pattern and Are Stronger Predictors of Prostate ADC Changes than Cellularity Metrics [J].
Chatterjee, Aritrick ;
Watson, Geoffrey ;
Myint, Esther ;
Sved, Paul ;
McEntee, Mark ;
Bourne, Roger .
RADIOLOGY, 2015, 277 (03) :751-762
[9]   Can DCE-MRI reduce the number of PI-RADS v.2 false positive findings? Role of quantitative pharmacokinetic parameters in prostate lesions characterization [J].
Cristel, Giulia ;
Esposito, Antonio ;
Damascelli, Anna ;
Briganti, Alberto ;
Ambrosi, Alessandro ;
Brembilla, Giorgio ;
Brunetti, Lisa ;
Antunes, Sofia ;
Freschi, Massimo ;
Montorsi, Francesco ;
Del Maschio, Alessandro ;
De Cobelli, Francesco .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 118 :51-57
[10]   Quantitative Whole-Body Diffusion-Weighted MR Imaging [J].
Donners, Ricardo ;
Blackledge, Matthew ;
Tunariu, Nina ;
Messiou, Christina ;
Merkle, Elmar M. ;
Koh, Dow-Mu .
MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2018, 26 (04) :479-+