On the first two coefficients of the Bergman function expansion for radial metrics

被引:6
作者
Feng, Zhiming [1 ]
机构
[1] Leshan Normal Univ, Sch Math & Informat Sci, Leshan 614000, Sichuan, Peoples R China
关键词
Coefficients of the Bergman function expansion; Constant scalar curvature metrics; Kahler metrics; ASYMPTOTIC-EXPANSION; HARTOGS DOMAINS; KERNELS; CONSTRUCTION; MANIFOLDS; THEOREM;
D O I
10.1016/j.geomphys.2017.05.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let g(F) be Miller metrics on rotation invariant domains Omega = B-d, C-d, B-d* C-d* associated with the Mier potentials Phi(F)(z, (z) over barY) = F(In(parallel to z parallel to(2)). The purpose of this paper is two fold. Firstly, we obtain explicit formulas of the coefficients a(j) (j = 1, 2) of the Bergman function expansion for the domains (Omega, g(F)). Secondly, we obtain explicit expressions of F when both a(1) and a(2) are constants on Omega. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:256 / 271
页数:16
相关论文
共 22 条
[1]  
Berezin F. A., 1974, USSR IZV, V8, P1109, DOI [10.1070/IM1974v008n05ABEH002140, DOI 10.1070/IM1974V008N05ABEH002140]
[2]   Balanced metrics on the Fock-Bargmann-Hartogs domains [J].
Bi, Enchao ;
Feng, Zhiming ;
Tu, Zhenhan .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2016, 49 (04) :349-359
[3]  
Cahen M., 1990, J GEOM PHYS, V7, P45
[4]  
CALABI E, 1982, ANN MATH STUD, P259
[5]  
Catlin D, 1999, TRENDS MATH, P1
[6]  
Dai XZ, 2006, J DIFFER GEOM, V72, P1
[7]   A Forelli-Rudin construction and asymptotics of weighted Bergman kernels [J].
Englis, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 177 (02) :257-281
[8]  
Englis M, 2000, J REINE ANGEW MATH, V528, P1
[9]   Balanced metrics on some Hartogs type domains over bounded symmetric domains [J].
Feng, Zhiming ;
Tu, Zhenhan .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2015, 47 (04) :305-333
[10]   On canonical metrics on Cartan-Hartogs domains [J].
Feng, Zhiming ;
Tu, Zhenhan .
MATHEMATISCHE ZEITSCHRIFT, 2014, 278 (1-2) :301-320