On the eigenvalues of the spatial sign covariance matrix in more than two dimensions

被引:15
作者
Duerre, Alexander [1 ]
Tyler, David E. [2 ]
Vogel, Daniel [3 ]
机构
[1] Tech Univ Dortmund, Fak Stat, D-44221 Dortmund, Germany
[2] Rutgers State Univ, Dept Stat & Biostat, Piscataway, NJ 08854 USA
[3] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen AB24 3UE, Scotland
基金
美国国家科学基金会;
关键词
Elliptical distribution; Spatial Kendall's tau matrix; Spatial sign; PRINCIPAL COMPONENT ANALYSIS;
D O I
10.1016/j.spl.2016.01.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We gather several results on the eigenvalues of the spatial sign covariance matrix of an elliptical distribution. It is shown that the eigenvalues are a one-to-one function of the eigenvalues of the shape matrix and that they are closer together than the latter. We further provide a one-dimensional integral representation of the eigenvalues, which facilitates their numerical computation. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:80 / 85
页数:6
相关论文
共 20 条
[1]  
[Anonymous], 2010, R LANG ENV STAT COMP
[2]   A multivariate version of Kendall's τ [J].
Choi, K ;
Marden, J .
JOURNAL OF NONPARAMETRIC STATISTICS, 1998, 9 (03) :261-293
[3]  
Croux C., 2002, Statistical Data Analysis Based on the L1-Norm and Related Methods, P257, DOI [10.1007/978-3-0348-8201-9_22, DOI 10.1007/978-3-0348-8201-9_22, 10.1007/978-3-0348-8201-9, DOI 10.1007/978-3-0348-8201-9]
[4]   Asymptotics of the two-stage spatial sign correlation [J].
Duerre, Alexander ;
Vogel, Daniel .
JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 144 :54-67
[5]   Spatial sign correlation [J].
Duerre, Alexander ;
Vogel, Daniel ;
Fried, Roland .
JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 135 :89-105
[6]   The spatial sign covariance matrix with unknown location [J].
Duerre, Alexander ;
Vogel, Daniel ;
Tyler, David E. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 130 :107-117
[7]  
FAN J., 2015, ARXIV150708377
[8]  
Frahm G., 2004, Generalized elliptical distributions: theory and applications
[9]   Robust functional estimation using the median and spherical principal components [J].
Gervini, Daniel .
BIOMETRIKA, 2008, 95 (03) :587-600
[10]  
Jeffrey A., 2007, Table of integrals, series, and products