A center manifold analysis for the Mullins-Sekerka model

被引:101
作者
Escher, J [1 ]
Simonett, G
机构
[1] Univ Basel, Inst Math, CH-4051 Basel, Switzerland
[2] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词
Mullins-Sekerka model; mean curvature; free boundary problem; generalized motion by mean curvature; center manifold;
D O I
10.1006/jdeq.1997.3373
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Mullins-Sekerka model is a nonlocal evolution model for hypersurfaces, which arises as a singular limit for the Cahn-Hilliard equation. We show that classical solutions exist globally and tend to spheres exponentially fast, provided that they are close to a sphere initially. Our analysis is based on center manifold theory and on maximal regularity. (C) 1998 Academic Press.
引用
收藏
页码:267 / 292
页数:26
相关论文
共 38 条
[1]  
Alikakos N., 1994, ARCH RATIONAL MECH A, V128, P164
[2]  
ALIKAKOS N, UNPUB 2 PHASE HELESH
[3]   THE SPECTRUM OF THE CAHN-HILLIARD OPERATOR FOR GENERIC INTERFACE IN HIGHER SPACE DIMENSIONS [J].
ALIKAKOS, ND ;
FUSCO, G .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (02) :637-674
[4]   Critical spectrum and stability of interfaces for a class of reaction-diffusion equations [J].
Alikakos, ND ;
Fusco, G ;
Stefanopoulos, V .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 126 (01) :106-167
[5]  
AMANN H, UNPUB, V3
[6]  
Amann H., 1995, Abstract Linear Theory, Monographs inMathematics, V89, DOI DOI 10.1007/978-3-0348-9221-6
[7]  
Amann H., 1993, FUNCTION SPACES DIFF, P9
[8]  
AMANN H, UNPUB, V2
[9]   NONLINEAR ANALYTIC SEMIFLOWS [J].
ANGENENT, SB .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 115 :91-107
[10]  
BATES P, 1995, ELECTRON J DIFFER EQ, P1