Estimating Stand Volume and Above-Ground Biomass of Urban Forests Using LiDAR

被引:72
作者
Giannico, Vincenzo [1 ]
Lafortezza, Raffaele [1 ,2 ]
John, Ranjeet [2 ]
Sanesi, Giovanni [1 ]
Pesola, Lucia [1 ]
Chen, Jiquan [2 ]
机构
[1] Univ Bari Aldo Moro, Dept Sci Agroambientali & Terr, Via Amendola 165-A, I-70126 Bari, Italy
[2] Michigan State Univ, CGCEO, E Lansing, MI 48823 USA
关键词
urban forest; Remote sensing; LiDAR; Stand volume; above-ground biomass; forest allometric model; DIAMETER DISTRIBUTIONS; ECOLOGICAL DIVERSITY; CANOPY STRUCTURE; BASAL AREA; GROWTH; AFFORESTATION; PARAMETERS; MANAGEMENT; NORTHERN; BALANCE;
D O I
10.3390/rs8040339
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Assessing forest stand conditions in urban and peri-urban areas is essential to support ecosystem service planning and management, as most of the ecosystem services provided are a consequence of forest stand characteristics. However, collecting data for assessing forest stand conditions is time consuming and labor intensive. A plausible approach for addressing this issue is to establish a relationship between in situ measurements of stand characteristics and data from airborne laser scanning (LiDAR). In this study we assessed forest stand volume and above-ground biomass (AGB) in a broadleaved urban forest, using a combination of LiDAR-derived metrics, which takes the form of a forest allometric model. We tested various methods for extracting proxies of basal area (BA) and mean stand height (H) from the LiDAR point-cloud distribution and evaluated the performance of different models in estimating forest stand volume and AGB. The best predictors for both models were the scale parameters of the Weibull distribution of all returns (except the first) (proxy of BA) and the 95th percentile of the distribution of all first returns (proxy of H). The R-2 were 0.81 (p < 0.01) for the stand volume model and 0.77 (p < 0.01) for the AGB model with a RMSE of 23.66 m(3).ha(-1) (23.3%) and 19.59 Mg.ha(-1) (23.9%), respectively. We found that a combination of two LiDAR-derived variables (i.e., proxy of BA and proxy of H), which take the form of a forest allometric model, can be used to estimate stand volume and above-ground biomass in broadleaved urban forest areas. Our results can be compared to other studies conducted using LiDAR in broadleaved forests with similar methods.
引用
收藏
页数:14
相关论文
共 56 条
[1]   Urban tree species mapping using hyperspectral and lidar data fusion [J].
Alonzo, Michael ;
Bookhagen, Bodo ;
Roberts, Dar A. .
REMOTE SENSING OF ENVIRONMENT, 2014, 148 :70-83
[2]   Estimating forest canopy fuel parameters using LIDAR data [J].
Andersen, HE ;
McGaughey, RJ ;
Reutebuch, SE .
REMOTE SENSING OF ENVIRONMENT, 2005, 94 (04) :441-449
[3]   LiDAR as a rapid tool to predict forest habitat types in Natura 2000 networks [J].
Baessler, Claus ;
Stadler, Jutta ;
Mueller, Joerg ;
Foerster, Bernhard ;
Goettlein, Axel ;
Brandl, Roland .
BIODIVERSITY AND CONSERVATION, 2011, 20 (03) :465-481
[4]  
BAILEY RL, 1973, FOREST SCI, V19, P97
[5]   Modeling the influence of alternative forest management scenarios on wood production and carbon storage: A case study in the Mediterranean region [J].
Bottalico, Francesca ;
Pesola, Lucia ;
Vizzarri, Matteo ;
Antonello, Leonardo ;
Barbati, Anna ;
Chirici, Gherardo ;
Corona, Piermaria ;
Cullotta, Sebastiano ;
Garfi, Vittorio ;
Giannico, Vincenzo ;
Lafortezza, Raffaele ;
Lombardi, Fabio ;
Marchetti, Marco ;
Nocentini, Susanna ;
Riccioli, Francesco ;
Travaglini, Davide ;
Sallustio, Lorenzo .
ENVIRONMENTAL RESEARCH, 2016, 144 :72-87
[6]   Applied urban ecology for sustainable urban environment [J].
Breuste, Juergen ;
Qureshi, Salman ;
Li, Junxiang .
URBAN ECOSYSTEMS, 2013, 16 (04) :675-680
[7]   Nondestructive estimates of above-ground biomass using terrestrial laser scanning [J].
Calders, Kim ;
Newnham, Glenn ;
Burt, Andrew ;
Murphy, Simon ;
Raumonen, Pasi ;
Herold, Martin ;
Culvenor, Darius ;
Avitabile, Valerio ;
Disney, Mathias ;
Armston, John ;
Kaasalainen, Mikko .
METHODS IN ECOLOGY AND EVOLUTION, 2015, 6 (02) :198-208
[8]   Tree allometry and improved estimation of carbon stocks and balance in tropical forests [J].
Chave, J ;
Andalo, C ;
Brown, S ;
Cairns, MA ;
Chambers, JQ ;
Eamus, D ;
Fölster, H ;
Fromard, F ;
Higuchi, N ;
Kira, T ;
Lescure, JP ;
Nelson, BW ;
Ogawa, H ;
Puig, H ;
Riéra, B ;
Yamakura, T .
OECOLOGIA, 2005, 145 (01) :87-99
[9]   Forest Canopy Cover and Height From MISR in Topographically Complex Southwestern US Landscapes Assessed With High Quality Reference Data [J].
Chopping, Mark ;
North, Malcolm ;
Chen, Jiquan ;
Schaaf, Crystal B. ;
Blair, J. Bryan ;
Martonchik, John V. ;
Bull, Michael A. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (01) :44-58
[10]   Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR [J].
Coops, Nicholas C. ;
Hilker, Thomas ;
Wulder, Michael A. ;
St-Onge, Benoit ;
Newnham, Glenn ;
Siggins, Anders ;
Trofymow, J. A. Tony .
TREES-STRUCTURE AND FUNCTION, 2007, 21 (03) :295-310