Computer-Assisted Methods for Analyzing Periodic Orbits in Vibrating Gravitational Billiards

被引:0
作者
Church, Kevin E. M. [1 ]
Fortin, Clement [2 ]
机构
[1] McGill Univ, Dept Math & Stat, 805 Sherbrooke St W, Montreal, PQ H3A 0B9, Canada
[2] McGill Univ, Dept Phys, 805 Sherbrooke St W, Montreal, PQ H3A 0B9, Canada
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2021年 / 31卷 / 08期
基金
加拿大自然科学与工程研究理事会;
关键词
Gravitational billiards; time-varying domain; periodic orbit; rigorous numerics; numerical continuation; BOUNCING BALL;
D O I
10.1142/S0218127421300214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using rigorous numerical methods, we prove the existence of 608 isolated periodic orbits in a gravitational billiard in a vibrating unbounded parabolic domain. We then perform pseudo-arclength continuation in the amplitude of the parabolic surface's oscillation to compute large, global branches of periodic orbits. These branches are themselves proven rigorously using computer-assisted methods. Our numerical investigations strongly suggest the existence of multiple pitchfork bifurcations in the billiard model. Based on the numerics, physical intuition and existing results for a simplified model, we conjecture that for any pair (k,p), there is a constant xi for which periodic orbits consisting of k impacts per period p cannot be sustained for amplitudes of oscillation below xi. We compute a verified upper bound for the conjectured critical amplitude for (k,p) = (2, 2) using our rigorous pseudo-arclength continuation.
引用
收藏
页数:18
相关论文
共 24 条
  • [1] Periodic orbits for billiards on an equilateral triangle
    Baxter, Andrew
    Umble, Ronald
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2008, 115 (06) : 479 - 491
  • [2] Periodic orbits in polygonal billiards
    Biswas, D
    [J]. PRAMANA-JOURNAL OF PHYSICS, 1997, 48 (02): : 487 - 501
  • [3] Periodic billiard orbits are dense in rational polygons
    Boshernitzan, M
    Galperin, G
    Kruger, T
    Troubetzkoy, S
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (09) : 3523 - 3535
  • [4] Global Bifurcation Diagrams of Steady States of Systems of PDEs via Rigorous Numerics: a 3-Component Reaction-Diffusion System
    Breden, Maxime
    Lessard, Jean-Philippe
    Vanicat, Matthieu
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2013, 128 (01) : 113 - 152
  • [5] Torus knot choreographies in the n-body problem
    Calleja, Renato
    Garcia-Azpeitia, Carlos
    Lessard, Jean-Philippe
    James, J. D. Mireles
    [J]. NONLINEARITY, 2021, 34 (01) : 313 - 349
  • [6] Rigid-body motion, interacting billiards, and billiards on curved manifolds
    Chatterjee, R
    Jackson, AD
    Balazs, NL
    [J]. PHYSICAL REVIEW E, 1996, 53 (06): : 5670 - 5679
  • [7] CHERNOV N, 2003, INTRO ERGODIC THEORY
  • [8] Circular, elliptic and oval billiards in a gravitational field
    da Costa, Diogo Ricardo
    Dettmann, Carl P.
    Leonel, Edson D.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) : 731 - 746
  • [9] Inelastic gravitational billiards
    Feldt, S
    Olafsen, JS
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (22)
  • [10] Gmez-Serrano J., 2019, SEMA J, V76, P459