Prospective Evaluation of the Addition of Polygenic Risk Scores to Breast Cancer Risk Models

被引:22
作者
Li, Sherly X. [1 ,2 ,3 ]
Milne, Roger L. [1 ,2 ,4 ]
Nguyen-Dumont, Tu [4 ,5 ]
Wang, Xiaochuan [1 ]
English, Dallas R. [1 ,2 ]
Giles, Graham G. [1 ,2 ,4 ]
Southey, Melissa C. [1 ,4 ,5 ]
Antoniou, Antonis C. [6 ]
Lee, Andrew [6 ]
Li, Shuai [2 ,4 ,6 ]
Winship, Ingrid [7 ,8 ]
Hopper, John L. [2 ]
Terry, Mary Beth [9 ]
MacInnis, Robert J. [1 ,2 ]
机构
[1] Canc Council Victoria, Canc Epidemiol Div, 615 St,Kilda Rd, Melbourne, Vic 3004, Australia
[2] Univ Melbourne, Ctr Epidemiol & Biostat, Melbourne, Vic, Australia
[3] Univ Cambridge, MRC, Epidemiol Unit, Cambridge, England
[4] Monash Univ, Sch Clin Sci Monash Hlth, Precis Med, Melbourne, Vic, Australia
[5] Univ Melbourne, Dept Clin Pathol, Melbourne, Vic, Australia
[6] Univ Cambridge, Ctr Canc Genet Epidemiol, Dept Publ Hlth & Primary Care, Strangeways Res Lab, Cambridge, England
[7] Royal Melbourne Hosp, Dept Genom Med, Melbourne, Vic, Australia
[8] Univ Melbourne, Royal Melbourne Hosp, Dept Med, Melbourne, Vic, Australia
[9] Columbia Univ, Mailman Sch Publ Hlth, Dept Epidemiol, New York, NY USA
基金
英国医学研究理事会;
关键词
METAANALYSIS; POPULATION; VALIDATION; SERVICE; WOMEN;
D O I
10.1093/jncics/pkab021
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: The Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm and the International Breast Cancer Intervention Study breast cancer risk models are used to provide advice on screening intervals and chemoprevention. We evaluated the performance of these models, which now incorporate polygenic risk scores (PRSs), using a prospective cohort study. Methods: We used a case-cohort design, involving women in the Melbourne Collaborative Cohort Study aged 50-75 years when surveyed in 2003-2007, of whom 408 had a first primary breast cancer diagnosed within 10 years (cases), and 2783 were from the subcohort. Ten-year risks were calculated based on lifestyle factors, family history data, and a 313-variant PRS. Discrimination was assessed using a C-statistic compared with 0.50 and calibration using the ratio of expected to observed number of cases (E/O). Results: When the PRS was added to models with lifestyle factors and family history, the C-statistic (95% confidence interval [CI]) increased from 0.57 (0.54 to 0.60) to 0.62 (0.60 to 0.65) using IBIS and from 0.56 (0.53 to 0.59) to 0.62 (0.59 to 0.64) using BOADICEA. IBIS underpredicted risk (E/O = 0.62, 95% CI = 0.48 to 0.80) for women in the lowest risk category (<1.7%) and overpredicted risk (E/O = 1.40, 95% CI = 1.18 to 1.67) in the highest risk category (>= 5%), using the Hosmer-Lemeshow test for calibration in quantiles of risk and a 2-sided P value less than .001. BOADICEA underpredicted risk (E/O = 0.82, 95% CI = 0.67 to 0.99) in the second highest risk category (3.4%-5%); the Hosmer-Lemeshow test and a 2-sided P value was equal to .02. Conclusions: Although the inclusion of a 313 genetic variant PRS doubles discriminatory accuracy (relative to reference 0.50), models with and without this PRS have relatively modest discrimination and might require recalibration before their clinical and wider use are promoted.
引用
收藏
页数:8
相关论文
共 35 条
[11]  
Global Cancer Observatory, 2018, CANC TOD GLOBOCAN 20
[12]   The impact of communicating genetic risks of disease on risk-reducing health behaviour: systematic review with meta-analysis [J].
Hollands, Gareth J. ;
French, David P. ;
Griffin, Simon J. ;
Prevost, A. Toby ;
Sutton, Stephen ;
King, Sarah ;
Marteau, Theresa M. .
BMJ-BRITISH MEDICAL JOURNAL, 2016, 352
[13]   A risk prediction algorithm for ovarian cancer incorporating BRCA1, BRCA2, common alleles and other familial effects [J].
Jervis, Sarah ;
Song, Honglin ;
Lee, Andrew ;
Dicks, Ed ;
Harrington, Patricia ;
Baynes, Caroline ;
Manchanda, Ranjit ;
Easton, Douglas F. ;
Jacobs, Ian ;
Pharoah, Paul P. D. ;
Antoniou, Antonis C. .
JOURNAL OF MEDICAL GENETICS, 2015, 52 (07) :465-475
[14]   A novel metric that quantifies risk stratification for evaluating diagnostic tests: The example of evaluating cervical-cancer screening tests across populations [J].
Katki, Hormuzd A. ;
Schiffman, Mark .
PREVENTIVE MEDICINE, 2018, 110 :100-105
[15]   Breast-Cancer Screening - Viewpoint of the IARC Working Group [J].
Lauby-Secretan, Beatrice ;
Scoccianti, Chiara ;
Loomis, Dana ;
Benbrahim-Tallaa, Lamia ;
Bouvard, Veronique ;
Bianchini, Franca ;
Straif, Kurt .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (24) :2353-2358
[16]   BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors [J].
Lee, Andrew ;
Mavaddat, Nasim ;
Wilcox, Amber N. ;
Cunningham, Alex P. ;
Carver, Tim ;
Hartley, Simon ;
de Villiers, Chantal Babb ;
Izquierdo, Angel ;
Simard, Jacques ;
Schmidt, Marjanka K. ;
Walter, Fiona M. ;
Chatterjee, Nilanjan ;
Garcia-Closas, Montserrat ;
Tischkowitz, Marc ;
Pharoah, Paul ;
Easton, Douglas F. ;
Antoniou, Antonis C. .
GENETICS IN MEDICINE, 2019, 21 (08) :1708-1718
[17]   The effect of communicating the genetic risk of cardiometabolic disorders on motivation and actual engagement in preventative lifestyle modification and clinical outcome: a systematic review and meta-analysis of randomised controlled trials [J].
Li, Sherly X. ;
Ye, Zheng ;
Whelan, Kevin ;
Truby, Helen .
BRITISH JOURNAL OF NUTRITION, 2016, 116 (05) :924-934
[18]   Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes [J].
Mavaddat, Nasim ;
Michailidou, Kyriaki ;
Dennis, Joe ;
Lush, Michael ;
Fachal, Laura ;
Lee, Andrew ;
Tyrer, Jonathan P. ;
Chen, Ting-Huei ;
Wang, Qin ;
Bolla, Manjeet K. ;
Yang, Xin ;
Adank, Muriel A. ;
Ahearn, Thomas ;
Aittomaki, Kristiina ;
Allen, Jamie ;
Andrulis, Irene L. ;
Anton-Culver, Hoda ;
Antonenkova, Natalia N. ;
Arndt, Volker ;
Aronson, Kristan J. ;
Auer, Paul L. ;
Auvinen, Paivi ;
Barrdahl, Myrto ;
Freeman, Laura E. Beane ;
Beckmann, Matthias W. ;
Behrens, Sabine ;
Benitez, Javier ;
Bermisheva, Marina ;
Bernstein, Leslie ;
Blomqvist, Carl ;
Bogdanova, Natalia, V ;
Bojesen, Stig E. ;
Bonanni, Bernardo ;
Borresen-Dale, Anne-Lise ;
Brauch, Hiltrud ;
Bremer, Michael ;
Brenner, Hermann ;
Brentnall, Adam ;
Brock, Ian W. ;
Brooks-Wilson, Angela ;
Brucker, Sara Y. ;
Bruening, Thomas ;
Burwinkel, Barbara ;
Campa, Daniele ;
Carter, Brian D. ;
Castelao, Jose E. ;
Chanock, Stephen J. ;
Chlebowski, Rowan ;
Christiansen, Hans ;
Clarke, Christine L. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2019, 104 (01) :21-34
[19]   Prediction of Breast Cancer Risk Based on Profiling With Common Genetic Variants [J].
Mavaddat, Nasim ;
Pharoah, Paul D. P. ;
Michailidou, Kyriaki ;
Tyrer, Jonathan ;
Brook, Mark N. ;
Bolla, Manjeet K. ;
Wang, Qin ;
Dennis, Joe ;
Dunning, Alison M. ;
Shah, Mitul ;
Luben, Robert ;
Brown, Judith ;
Bojesen, Stig E. ;
Nordestgaard, Borge G. ;
Nielsen, Sune F. ;
Flyger, Henrik ;
Czene, Kamila ;
Darabi, Hatef ;
Eriksson, Mikael ;
Peto, Julian ;
dos-Santos-Silva, Isabel ;
Dudbridge, Frank ;
Johnson, Nichola ;
Schmidt, Marjanka K. ;
Broeks, Annegien ;
Verhoef, Senno ;
Rutgers, Emiel J. ;
Swerdlow, Anthony ;
Ashworth, Alan ;
Orr, Nick ;
Schoemaker, Minouk J. ;
Figueroa, Jonine ;
Chanock, Stephen J. ;
Brinton, Louise ;
Lissowska, Jolanta ;
Couch, Fergus J. ;
Olson, Janet E. ;
Vachon, Celine ;
Pankratz, Vernon S. ;
Lambrechts, Diether ;
Wildiers, Hans ;
Van Ongeval, Chantal ;
Van Limbergen, Erik ;
Kristensen, Vessela ;
Alnaes, Grethe Grenaker ;
Nord, Silje ;
Borresen-Dale, Anne-Lise ;
Nevanlinna, Heli ;
Muranen, Taru A. ;
Aittomaeki, Kristiina .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2015, 107 (05)
[20]  
Medicare.gov, 2019, GET START MED