Prospective Evaluation of the Addition of Polygenic Risk Scores to Breast Cancer Risk Models

被引:22
作者
Li, Sherly X. [1 ,2 ,3 ]
Milne, Roger L. [1 ,2 ,4 ]
Nguyen-Dumont, Tu [4 ,5 ]
Wang, Xiaochuan [1 ]
English, Dallas R. [1 ,2 ]
Giles, Graham G. [1 ,2 ,4 ]
Southey, Melissa C. [1 ,4 ,5 ]
Antoniou, Antonis C. [6 ]
Lee, Andrew [6 ]
Li, Shuai [2 ,4 ,6 ]
Winship, Ingrid [7 ,8 ]
Hopper, John L. [2 ]
Terry, Mary Beth [9 ]
MacInnis, Robert J. [1 ,2 ]
机构
[1] Canc Council Victoria, Canc Epidemiol Div, 615 St,Kilda Rd, Melbourne, Vic 3004, Australia
[2] Univ Melbourne, Ctr Epidemiol & Biostat, Melbourne, Vic, Australia
[3] Univ Cambridge, MRC, Epidemiol Unit, Cambridge, England
[4] Monash Univ, Sch Clin Sci Monash Hlth, Precis Med, Melbourne, Vic, Australia
[5] Univ Melbourne, Dept Clin Pathol, Melbourne, Vic, Australia
[6] Univ Cambridge, Ctr Canc Genet Epidemiol, Dept Publ Hlth & Primary Care, Strangeways Res Lab, Cambridge, England
[7] Royal Melbourne Hosp, Dept Genom Med, Melbourne, Vic, Australia
[8] Univ Melbourne, Royal Melbourne Hosp, Dept Med, Melbourne, Vic, Australia
[9] Columbia Univ, Mailman Sch Publ Hlth, Dept Epidemiol, New York, NY USA
基金
英国医学研究理事会;
关键词
METAANALYSIS; POPULATION; VALIDATION; SERVICE; WOMEN;
D O I
10.1093/jncics/pkab021
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: The Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm and the International Breast Cancer Intervention Study breast cancer risk models are used to provide advice on screening intervals and chemoprevention. We evaluated the performance of these models, which now incorporate polygenic risk scores (PRSs), using a prospective cohort study. Methods: We used a case-cohort design, involving women in the Melbourne Collaborative Cohort Study aged 50-75 years when surveyed in 2003-2007, of whom 408 had a first primary breast cancer diagnosed within 10 years (cases), and 2783 were from the subcohort. Ten-year risks were calculated based on lifestyle factors, family history data, and a 313-variant PRS. Discrimination was assessed using a C-statistic compared with 0.50 and calibration using the ratio of expected to observed number of cases (E/O). Results: When the PRS was added to models with lifestyle factors and family history, the C-statistic (95% confidence interval [CI]) increased from 0.57 (0.54 to 0.60) to 0.62 (0.60 to 0.65) using IBIS and from 0.56 (0.53 to 0.59) to 0.62 (0.59 to 0.64) using BOADICEA. IBIS underpredicted risk (E/O = 0.62, 95% CI = 0.48 to 0.80) for women in the lowest risk category (<1.7%) and overpredicted risk (E/O = 1.40, 95% CI = 1.18 to 1.67) in the highest risk category (>= 5%), using the Hosmer-Lemeshow test for calibration in quantiles of risk and a 2-sided P value less than .001. BOADICEA underpredicted risk (E/O = 0.82, 95% CI = 0.67 to 0.99) in the second highest risk category (3.4%-5%); the Hosmer-Lemeshow test and a 2-sided P value was equal to .02. Conclusions: Although the inclusion of a 313 genetic variant PRS doubles discriminatory accuracy (relative to reference 0.50), models with and without this PRS have relatively modest discrimination and might require recalibration before their clinical and wider use are promoted.
引用
收藏
页数:8
相关论文
共 35 条
[1]   STATISTICS NOTES - DIAGNOSTIC-TESTS-1 - SENSITIVITY AND SPECIFICITY .3. [J].
ALTMAN, DG ;
BLAND, JM .
BRITISH MEDICAL JOURNAL, 1994, 308 (6943) :1552-1552
[2]   The BOADICEA model of genetic susceptibility to breast and ovarian cancer [J].
Antoniou, AC ;
Pharoah, PPD ;
Smith, P ;
Easton, DF .
BRITISH JOURNAL OF CANCER, 2004, 91 (08) :1580-1590
[3]  
Australian Institute of Health and Welfare, 2015, CANC DATA AUSTR
[4]  
BreastScreen Victoria, 2017, BREASTSCREEN VICTORI
[5]   A case-control evaluation of 143 single nucleotide polymorphisms for breast cancer risk stratification with classical factors and mammographic density [J].
Brentnall, Adam R. ;
van Veen, Elke M. ;
Harkness, Elaine F. ;
Rafiq, Sajjad ;
Byers, Helen ;
Astley, Susan M. ;
Sampson, Sarah ;
Howell, Anthony ;
Newman, William G. ;
Cuzick, Jack ;
Evans, Dafydd Gareth R. .
INTERNATIONAL JOURNAL OF CANCER, 2020, 146 (08) :2122-2129
[6]   Breast cancer risk models: a comprehensive overview of existing models, validation, and clinical applications [J].
Cintolo-Gonzalez, Jessica A. ;
Braun, Danielle ;
Blackford, Amanda L. ;
Mazzola, Emanuele ;
Acar, Ahmet ;
Plichta, Jennifer K. ;
Griffin, Molly ;
Hughes, Kevin S. .
BREAST CANCER RESEARCH AND TREATMENT, 2017, 164 (02) :263-284
[7]   Next-generation genotype imputation service and methods [J].
Das, Sayantan ;
Forer, Lukas ;
Schoenherr, Sebastian ;
Sidore, Carlo ;
Locke, Adam E. ;
Kwong, Alan ;
Vrieze, Scott I. ;
Chew, Emily Y. ;
Levy, Shawn ;
McGue, Matt ;
Schlessinger, David ;
Stambolian, Dwight ;
Loh, Po-Ru ;
Iacono, William G. ;
Swaroop, Anand ;
Scott, Laura J. ;
Cucca, Francesco ;
Kronenberg, Florian ;
Boehnke, Michael ;
Abecasis, Goncalo R. ;
Fuchsberger, Christian .
NATURE GENETICS, 2016, 48 (10) :1284-1287
[8]   Breast Cancer Risk Prediction Using Clinical Models and 77 Independent Risk-Associated SNPs for Women Aged Under 50 Years: Australian Breast Cancer Family Registry [J].
Dite, Gillian S. ;
MacInnis, Robert J. ;
Bickerstaffe, Adrian ;
Dowty, James G. ;
Allman, Richard ;
Apicella, Carmel ;
Milne, Roger L. ;
Tsimiklis, Helen ;
Phillips, Kelly-Anne ;
Giles, Graham G. ;
Terry, Mary Beth ;
Southey, Melissa C. ;
Hopper, John L. .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2016, 25 (02) :359-365
[9]   Assessing Individual Breast Cancer Risk within the UK National Health Service Breast Screening Program: A New Paradigm for Cancer Prevention [J].
Evans, D. Gareth R. ;
Warwick, Jane ;
Astley, Susan M. ;
Stavrinos, Paula ;
Sahin, Sarah ;
Ingham, Sarah ;
McBurney, Helen ;
Eckersley, Barbara ;
Harvie, Michelle ;
Wilson, Mary ;
Beetles, Ursula ;
Warren, Ruth ;
Hufton, Alan ;
Sergeant, Jamie C. ;
Newman, William G. ;
Buchan, Iain ;
Cuzick, Jack ;
Howell, Anthony .
CANCER PREVENTION RESEARCH, 2012, 5 (07) :943-951
[10]   Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017 A Systematic Analysis for the Global Burden of Disease Study [J].
Fitzmaurice, Christina ;
Abate, Degu ;
Abbasi, Naghmeh ;
Abbastabar, Hedayat ;
Abd-Allah, Foad ;
Abdel-Rahman, Omar ;
Abdelalim, Ahmed ;
Abdoli, Amir ;
Abdollahpour, Ibrahim ;
Abdulle, Abdishakur S. M. ;
Abebe, Nebiyu Dereje ;
Abraha, Haftom Niguse ;
Abu-Raddad, Laith Jamal ;
Abualhasan, Ahmed ;
Adedeji, Isaac Akinkunmi ;
Advani, Shailesh M. ;
Afarideh, Mohsen ;
Afshari, Mandi ;
Aghaali, Mohammad ;
Agius, Dominic ;
Agrawal, Sutapa ;
Ahmadi, Ayat ;
Ahmadian, Elham ;
Ahmadpour, Ehsan ;
Ahmed, Muktar Beshir ;
Akbari, Mohammad Esmaeil ;
Akinyemiju, Tomi ;
Al-Aly, Ziyad ;
AlAbdulKader, Assim M. ;
Alandab, Fares ;
Alam, Tahiya ;
Alamene, Genet Melak ;
Alemnew, Birhan Tamene T. ;
Alene, Kefyalew Addis ;
Alinia, Cyrus ;
Alipour, Vahid ;
Aljunid, Syed Mohamed ;
Bakeshei, Fatemeh Allah ;
Abdulrahman, Majid ;
Almadi, Hamad ;
Almasi-Hashiani, Amir ;
Alsharif, Ubai ;
Alsowaidi, Shirina ;
Alvis-Guzman, Nelson ;
Amini, Erfan ;
Amini, Saeed ;
Amoako, Yaw Ampem ;
Anbari, Zohreh ;
Anber, Nahla Hamed ;
Andrei, Catalina Liliana .
JAMA ONCOLOGY, 2019, 5 (12) :1749-1768