High-Voltage Flexible Microsupercapacitors Based on Laser-Induced Graphene

被引:86
|
作者
Li, Xiaoqian [1 ,2 ]
Cai, Weihua [1 ,3 ]
Teh, Kwok Siong [4 ]
Qi, Mingjing [1 ]
Zang, Xining [1 ]
Ding, Xinrui [1 ]
Cui, Yong [1 ]
Xie, Yingixi [1 ]
Wu, Yichuan [1 ]
Ma, Hongyu [1 ]
Zhou, Zaifa [2 ]
Huang, Qing-An [2 ]
Ye, Jianshan [3 ]
Lin, Liwei [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94709 USA
[2] Southeast Univ, Key Lab MEMS, Minist Educ, Nanjing 210096, Jiangsu, Peoples R China
[3] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510641, Guangdong, Peoples R China
[4] San Francisco State Univ, Sch Engn, San Francisco, CA 94132 USA
基金
中国国家自然科学基金;
关键词
high voltage; laser-induced graphene; microsupercapacitors; microsensors; microrobots; ON-CHIP; SUPERCAPACITORS;
D O I
10.1021/acsami.8b10301
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High-voltage energy-storage devices are quite commonly needed for robots and dielectric elastomers. This paper presents a flexible high-voltage microsupercapacitor (MSC) with a planar in-series architecture for the first time based on laser-induced graphene. The high-voltage devices are capable of supplying output voltages ranging from a few to thousands of volts. The measured capacitances for the 1, 3, and 6 V MSCs were 60.5, 20.7, and 10.0 mu F, respectively, under an applied current of 1.0 mu A. After the 5000-cycle charge-discharge test, the 6 V MSC retained about 97.8% of the initial capacitance. It also was recorded that the all-solid-state 209 V MSC could achieve a high capacitance of 0.431 mu F at a low applied current of 0.2 mu A and a capacitance of 0.18 mu F even at a high applied current of 5.0 mu A. We further demonstrate the robust function of our flexible high-voltage MSCs by using them to power a piezoresistive microsensor (6 V) and a walking robot (>2000 V). Considering the simple, direct, and cost-effective fabrication method of our laser-fabricated flexible high-voltage MSCs, this work paves the way and lays the foundation for high-voltage energy-storage devices.
引用
收藏
页码:26357 / 26364
页数:8
相关论文
共 50 条
  • [41] A Bandi flexible pressure sensor based on the composite of laser-induced graphene and AgNWs
    Zhang, Jiawei
    Cui, Yixuan
    Liu, Chunxiao
    Wang, Xiangfu
    Tang, Weihua
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (01)
  • [42] Flexible electrodes based on laser-induced graphene as an analytical platform to monitor amoxicillin
    de Souza, Cassiano Cunha
    Carvalho, Mayane Sousa
    de Oliveira, Wallace Burger Verissimo
    Lisboa, Thalles Pedrosa
    Oliveira, Raylla Santos
    Lopes, Osmando F.
    Munoz, Rodrigo Alejandro Abarza
    Matos, Maria Auxiliadora Costa
    Matos, Renato Camargo
    ELECTROCHIMICA ACTA, 2024, 508
  • [43] Ultrathin flexible terahertz metamaterial bandstop filter based on laser-induced graphene
    Zhang, Rongxuan
    Zong, Guwei
    Wu, Shuangyue
    Song, Ruiqi
    Zhang, Xu
    Ge, Shijun
    Hu, Wei
    Wang, Lei
    Lu, Yanqing
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2022, 39 (04) : 1229 - 1232
  • [44] Flexible Capacitive Pressure Sensor Based on Laser-Induced Graphene and Polydimethylsiloxane Foam
    Huang, Lixiong
    Wang, Han
    Zhan, Daohua
    Fang, Feiyu
    IEEE SENSORS JOURNAL, 2021, 21 (10) : 12048 - 12056
  • [45] Paper-based laser-induced graphene for sustainable and flexible microsupercapacitor applications
    Coelho, Joao
    Correia, Ricardo F.
    Silvestre, Sara
    Pinheiro, Tomas
    Marques, Ana C.
    Correia, M. Rosario P.
    Pinto, Joana Vaz
    Fortunato, Elvira
    Martins, Rodrigo
    MICROCHIMICA ACTA, 2023, 190 (01)
  • [46] Flexible leaf wetness sensor based on laser-induced graphene for precision agriculture
    Huang, Fei
    Ryan, Grace
    Mustafa, Zaid
    Leroux, Charline
    Lukman, James
    Woo, Qianyuan
    Gan, Wee Chen
    Tan, Swee Tiam
    Feng, Junping
    Aw, Kean
    SENSORS AND ACTUATORS A-PHYSICAL, 2025, 388
  • [47] Laser-Induced Nitrogen-doped Graphene for High-Performance Flexible Supercapacitors
    Chen, Chaojie
    Wang, Fangcheng
    Yao, Wentao
    Wang, Min
    Yang, Cheng
    2020 21ST INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY (ICEPT), 2020,
  • [48] A Flexible Wearable Sensor Based on Laser-Induced Graphene for High-Precision Fine Motion Capture for Pilots
    Xing, Xiaoqing
    Zou, Yao
    Zhong, Mian
    Li, Shichen
    Fan, Hongyun
    Lei, Xia
    Yin, Juhang
    Shen, Jiaqing
    Liu, Xinyi
    Xu, Man
    Jiang, Yong
    Tang, Tao
    Qian, Yu
    Zhou, Chao
    SENSORS, 2024, 24 (04)
  • [49] Laser-induced Flexible Graphene Bioelectrodes for Enzymatic Biofuel Cell
    Rewatkar, Prakash
    Kothuru, Avinash
    Goel, Sanket
    2019 13TH IEEE INTERNATIONAL CONFERENCE ON NANO/MOLECULAR MEDICINE & ENGINEERING (IEEE-NANOMED 2019), 2019, : 92 - 92
  • [50] Laser-Induced Graphene Film and Its Applications in Flexible Electronics
    Liu, Huilong
    Chen, Yun
    APPLIED SCIENCES-BASEL, 2022, 12 (21):