Effect of processing parameters on meltdown in quasi-simultaneous laser transmission welding

被引:19
作者
Ghasemi, Hesam [1 ]
Zhang, Ying [1 ]
Bates, Philip J. [1 ]
Zak, Gene [2 ]
DuQuesnay, David L. [3 ]
机构
[1] Royal Mil Coll Canada, Chem & Chem Engn, Kingston, ON, Canada
[2] Queenss Univ, Mech & Mat Engn, Kingston, ON, Canada
[3] Royal Mil Coll Canada, Mech & Aerosp Engn, Kingston, ON, Canada
关键词
Quasi-simultaneous; Plastic welding; Laser transmission welding; Meltdown; Line energy; POLYMERS; THERMOPLASTICS; STRENGTH; MODEL;
D O I
10.1016/j.optlastec.2018.05.047
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Meltdown is the term used to describe the collapse of two thermoplastic parts during welding. It is a critical process parameter in the laser-transmission welding of thermoplastics. This study examines the effect of quasi-simultaneous (QS) laser transmission welding (LTW) processing parameters including input power (P), number of passes (N), scan speed (V), total scan length (L-S) and weld pressure on the meltdown behavior of polycarbonate (PC) and polypropylene (PP), using a T-shaped test assembly. The total meltdown is shown to depend linearly on the total line energy (LET) defined as the product of P and N divided by V. Increasing L-s increases the critical LET for meltdown to begin. A simple model is presented that captures the main elements of meltdown in this thermoplastic welding process. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:244 / 252
页数:9
相关论文
共 23 条
[1]   Application of artificial neural network for predicting weld quality in laser transmission welding of thermoplastics [J].
Acherjee, Bappa ;
Mondal, Subrata ;
Tudu, Bipan ;
Misra, Dipten .
APPLIED SOFT COMPUTING, 2011, 11 (02) :2548-2555
[2]   Prediction of weld strength and seam width for laser transmission welding of thermoplastic using response surface methodology [J].
Acherjee, Bappa ;
Misra, Dipten ;
Bose, Dipankar ;
Venkadeshwaran, K. .
OPTICS AND LASER TECHNOLOGY, 2009, 41 (08) :956-967
[3]   Analytical and numerical modeling of light scattering in composite transmission laser welding process [J].
Akue Asseko, Andre Chateau ;
Cosson, Benoit ;
Deleglise, Mylene ;
Schmidt, Fabrice ;
Le Maoult, Yannick ;
Lafranche, Eric .
INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2015, 8 (01) :127-135
[4]   Transmission laser welding of amorphous and semi-crystalline poly-ether-ether-ketone for applications in the medical device industry [J].
Amanat, Negin ;
Chaminade, Cedric ;
Grace, John ;
McKenzie, David R. ;
James, Natalie L. .
MATERIALS & DESIGN, 2010, 31 (10) :4823-4830
[5]  
[Anonymous], 2007, Introduction to Heat Transfer
[6]  
Bagheriasl D., 2015, AIP C P, P1664
[7]   Numerical model of CO2 laser welding of thermoplastic polymers [J].
Casalino, Giuseppe ;
Ghorbel, Elhem .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 207 (1-3) :63-71
[8]   Description of transmitted energy during laser transmission welding of polymers [J].
Chen, M. ;
Zak, G. ;
Bates, P. J. .
WELDING IN THE WORLD, 2013, 57 (02) :171-178
[9]   3D FINITE ELEMENT MODELLING OF CONTOUR LASER TRANSMISSION WELDING OF POLYCARBONATE [J].
Chen, M. ;
Zak, G. ;
Bates, P. J. .
WELDING IN THE WORLD, 2009, 53 (7-8) :R188-R197
[10]  
Ehrenstein G., 2001, Polymeric Materials Structure, Properties, Applications