A NEW MULTIMODEL MACHINE LEARNING FRAMEWORK TO IMPROVE HEPATIC FIBROSIS GRADING USING ULTRASOUND ELASTOGRAPHY SYSTEMS FROM DIFFERENT VENDORS

被引:9
作者
Durot, Isabelle [1 ,2 ]
Akhbardeh, Alireza [1 ]
Sagreiya, Hersh [1 ]
Loening, Andreas M. [1 ]
Rubin, Daniel L. [1 ,3 ,4 ]
机构
[1] Stanford Univ, Sch Med, Dept Radiol, 1265 Welch Rd,Room X-335,MC 5464, Stanford, CA 94305 USA
[2] Cantonal Hosp Aarau, Inst Radiol, Aarau, Switzerland
[3] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Med Biomed Informat Res, Stanford, CA 94305 USA
关键词
Machine learning; Ultrasound; Liver fibrosis; Shear wave elastography; RADIATION FORCE IMPULSE; MAGNETIC-RESONANCE ELASTOGRAPHY; LIVER FIBROSIS; CLINICAL-USE; CLASSIFICATION; RECOMMENDATIONS; GUIDELINES; DIAGNOSIS; DISEASE;
D O I
10.1016/j.ultrasmedbio.2019.09.004
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The purpose of the work described here was to determine if the diagnostic performance of point and 2-D shear wave elastography (pSWE; 2-DSWE) using shear wave velocity (SWV) with a new machine learning (ML) technique applied to systems from different vendors is comparable to that of magnetic resonance elastography (MRE) in distinguishing non-significant (<F2) from significant (>= F2) fibrosis. We included two patient groups with liver disease: (i) 144 patients undergoing pSWE (Siemens) and MRE; and (ii) 60 patients undergoing 2-DSWE (Philips) and MRE. Four ML algorithms using 10 SWV measurements as inputs were trained with MRE. Results were validated using twofold cross-validation. The performance of median SWV in binary grading of fibrosis was moderate for pSWE (area under the curve [AUC]: 0.76) and 2-DSWE (0.84); the ML algorithm support vector machine (SVM) performed particularly well (pSWE: 0.96, 2-DSWE: 0.99). The results suggest that the multivendor ML-based algorithm SVM can binarily grade liver fibrosis using ultrasound elastography with excellent diagnostic performance, comparable to that of MRE. (C) 2019 World Federation for Ultrasound in Medicine & Biology. All rights reserved.
引用
收藏
页码:26 / 33
页数:8
相关论文
共 26 条
  • [1] Accuracy of Fibroscan, Compared With Histology, in Analysis of Liver Fibrosis in Patients With Hepatitis B or C: A United States Multicenter Study
    Afdhal, Nezam H.
    Bacon, Bruce R.
    Patel, Keyur
    Lawitz, Eric J.
    Gordon, Stuart C.
    Nelson, David R.
    Challies, Tracy L.
    Nasser, Imad
    Garg, Jyotsna
    Wei, Lee-Jen
    McHutchison, John G.
    [J]. CLINICAL GASTROENTEROLOGY AND HEPATOLOGY, 2015, 13 (04) : 772 - +
  • [2] INTRA- AND INTEROPERATOR REPRODUCIBILITY OF ACOUSTIC RADIATION FORCE IMPULSE (ARFI) ELASTOGRAPHY-PRELIMINARY RESULTS
    Bota, Simona
    Sporea, Ioan
    Sirli, Roxana
    Popescu, Alina
    Danila, Mirela
    Costachescu, Dan
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2012, 38 (07) : 1103 - 1108
  • [3] Machine-learning-based classification of real-time tissue elastography for hepatic fibrosis in patients with chronic hepatitis B
    Chen, Yang
    Luo, Yan
    Huang, Wei
    Hu, Die
    Zheng, Rong-qin
    Gong, Shu-zhen
    Meng, Fan-kun
    Yang, Hong
    Lin, Hong-jun
    Sun, Yan
    Wang, Xiu-yan
    Wu, Tao
    Ren, Jie
    Pei, Shu-Fang
    Zheng, Ying
    He, Yun
    Hu, Yu
    Yang, Na
    Yan, Hongmei
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 : 18 - 23
  • [4] Magnetic Resonance Elastography Is Superior to Acoustic Radiation Force Impulse for the Diagnosis of Fibrosis in Patients With Biopsy-Proven Nonalcoholic Fatty Liver Disease: A Prospective Study
    Cui, Jeffrey
    Heba, Elhamy
    Hernandez, Carolyn
    Haufe, William
    Hooker, Jonathan
    Andre, Michael P.
    Valasek, Mark A.
    Aryafar, Hamed
    Sirlin, Claude B.
    Loomba, Rohit
    [J]. HEPATOLOGY, 2016, 63 (02) : 453 - 461
  • [5] Tissue Quantification With Acoustic Radiation Force Impulse Imaging: Measurement Repeatability and Normal Values in the Healthy Liver
    D'Onofrio, Mirko
    Gallotti, Anna
    Mucelli, Roberto Pozzi
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2010, 195 (01) : 132 - 136
  • [6] EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version)
    Dietrich, Christoph F.
    Bamber, Jeffrey
    Berzigotti, Annalisa
    Bota, Simona
    Cantisani, Vito
    Castera, Laurent
    Cosgrove, David
    Ferraioli, Giovanna
    Friedrich-Rust, Mireen
    Gilja, Odd Helge
    Goertz, Ruediger Stephan
    Karlas, Thomas
    de Knegt, Robert
    de Ledinghen, Victor
    Piscaglia, Fabio
    Procopet, Bogdan
    Saftoiu, Adrian
    Sidhu, Paul S.
    Sporea, Ioan
    Thiele, Maja
    [J]. ULTRASCHALL IN DER MEDIZIN, 2017, 38 (04): : E16 - E47
  • [7] Dobson AJ, 2002, INTRO GEN LINEAR MOD
  • [8] Machine Learning for Medical Imaging1
    Erickson, Bradley J.
    Korfiatis, Panagiotis
    Akkus, Zeynettin
    Kline, Timothy L.
    [J]. RADIOGRAPHICS, 2017, 37 (02) : 505 - 515
  • [9] Evaluation of Inter-System Variability in Liver Stiffness Measurements
    Ferraioli, Giovanna
    De Silvestri, Annalisa
    Lissandrin, Raffaella
    Maiocchi, Laura
    Tinelli, Carmine
    Filice, Carlo
    Barr, Richard G.
    [J]. ULTRASCHALL IN DER MEDIZIN, 2019, 40 (01): : 64 - 75
  • [10] WFUMB GUIDELINES AND RECOMMENDATIONS FOR CLINICAL USE OF ULTRASOUND ELASTOGRAPHY: PART 3: LIVER
    Ferraioli, Giovanna
    Filice, Carlo
    Castera, Laurent
    Choi, Byung Ihn
    Sporea, Ioan
    Wilson, Stephanie R.
    Cosgrove, David
    Dietrich, Christoph F.
    Amy, Dominique
    Bamber, Jeffrey C.
    Barr, Richard
    Chou, Yi-Hong
    Ding, Hong
    Farrokh, Andre
    Friedrich-Rust, Mireen
    Hall, Timothy J.
    Nakashima, Kazutaka
    Nightingale, Kathryn R.
    Palmeri, Mark L.
    Schafer, Fritz
    Shiina, Tsuyoshi
    Suzuki, Shinichi
    Kudo, Masatoshi
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2015, 41 (05) : 1161 - 1179