Effects of TiO2 doping on the defect chemistry and thermo-physical properties of Yb203 stabilized Zr02

被引:47
作者
Guo, Lei [1 ,2 ,3 ]
Zhang, Chenglong [1 ,2 ]
Xu, Luming [1 ,2 ]
Li, Mingzhu [1 ,2 ]
Wang, Qi [1 ]
Ye, Fuxing [1 ,2 ,3 ]
Dan, Chengyi [4 ]
Ji, Vincent [4 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Tianjin Key Lab Adv Joining Technol, Tianjin, Peoples R China
[3] Tianjin Univ, Minist Educ, Key Lab Adv Ceram & Machining Technol, 92 Weijin Rd, Tianjin 300072, Peoples R China
[4] Univ Paris Sud, UMR CNRS 8182, ICMMO SP2M, F-91405 Orsay, France
基金
中国国家自然科学基金;
关键词
Thermal barrier coating; Defect model; Phase structure; Thermo-physical properties; BARRIER COATINGS; PHASE-STABILITY; CONDUCTIVITY; EXPANSION; TOUGHNESS; MICROSTRUCTURE; CERAMICS; OXIDES; SC2O3; GD;
D O I
10.1016/j.jeurceramsoc.2017.04.065
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Yb(2)0(3) stabilized Zr0(2) (YbSZ) doped with different TiO2 contents were produced, and their phase structure, thermal conductivities and thermal expansion coefficients were investigated. A new solid -solution model is proposed, i.e. Ti4+ would take the interstitial sites when its content is below a critical value (<2.5 mol%) and then substitute for Zr4+. The abnormal lattice volume and thermo-physical properties of 2.5 mol% TiO2 doped YbSZ, and the positive effects of TiO2 doping on the thermal conductivity at moderate doping level are consistent with the new defect model. However, monoclinic phase is formed when the TiO2 content reaches to 10 mol% and its content increases with doping content, which have negative influence on the thermo-physical properties. Considering the comprehensive properties, 10 mol% TiO2 doped YbSZ is considered as a promising thermal barrier coating ceramic. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4163 / 4169
页数:7
相关论文
共 48 条
  • [1] Berman R., 1976, Thermal Conduction in Solids, P1
  • [2] Phase stability of thermal barrier oxides:: A comparative study of Y and Yb additions
    Cairney, Julie M.
    Rebollo, Noemi R.
    Ruehle, Manfred
    Levi, Carlos G.
    [J]. INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2007, 98 (12) : 1177 - 1187
  • [3] EFFECT OF POINT IMPERFECTIONS ON LATTICE THERMAL CONDUCTIVITY
    CALLAWAY, J
    VONBAEYER, HC
    [J]. PHYSICAL REVIEW, 1960, 120 (04): : 1149 - 1154
  • [4] MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES
    CALLAWAY, J
    [J]. PHYSICAL REVIEW, 1959, 113 (04): : 1046 - 1051
  • [5] Ceramic materials for thermal barrier coatings
    Cao, XQ
    Vassen, R
    Stoever, D
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (01) : 1 - 10
  • [6] Chen T. D., 2008, CERAM INT, V34
  • [7] Thermal barrier coating materials
    Clarke, David R.
    Phillpot, Simon R.
    [J]. MATERIALS TODAY, 2005, 8 (06) : 22 - 29
  • [8] Thermal conductivity of ytterbia-stabilized zirconia
    Feng, Jing
    Ren, Xiaorui
    Wang, Xiaoyan
    Zhou, Rong
    Pan, Wei
    [J]. SCRIPTA MATERIALIA, 2012, 66 (01) : 41 - 44
  • [9] Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium-magnesium-alumina-silicate penetration
    Gao, Lihua
    Guo, Hongbo
    Gong, Shengkai
    Xu, Huibin
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2014, 34 (10) : 2553 - 2561
  • [10] Glen A., 1979, SOLID STATE PHYS, V34, P1, DOI 10.1016/S0081-1947(08)60359-8