Connecting orbits of time dependent Lagrangian systems

被引:70
作者
Bernard, P [1 ]
机构
[1] Univ Grenoble 1, Inst Fourier, F-38402 St Martin Dheres, France
关键词
connecting orbits; Lagrangian systems; minimizing orbits;
D O I
10.5802/aif.1924
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize to higher dimension results of Birkhoff and Mather on the existence of orbits wandering in regions of instability of twist maps. This generalization is strongly inspired by the one proposed by Mather. However, its advantage is that it contains most of the results of Birkhoff and Mather on twist maps.
引用
收藏
页码:1533 / +
页数:37
相关论文
共 15 条
[1]   ONE-DIMENSIONAL VARIATIONAL-PROBLEMS WHOSE MINIMIZERS DO NOT SATISFY THE EULER-LAGRANGE EQUATION [J].
BALL, JM ;
MIZEL, VJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 90 (04) :325-388
[2]  
Contreras G., 1997, BOL SOC BRAS MAT, V28, P155
[3]   On convergence of the Lax-Oleinik semi-group [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (03) :267-270
[4]   Failure of convergence of the Lax-Oleinik semi-group in the time-periodic case [J].
Fathi, A ;
Mather, JN .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2000, 128 (03) :473-483
[5]  
FATHI A, UNPUB
[6]  
Mane R., 1997, BOL SOC BRAS MAT, V28, P141
[7]  
MASSART D, 2001, AUBRY SET MATHERS AC
[8]  
MATHER J, 1994, LECT NOTES MATH, V1589
[9]  
Mather J., 1991, J. Amer. Math. Soc, V4, P207
[10]  
Mather J. N., 1990, B SOC BRASIL MAT NS, V21, P59, DOI DOI 10.1007/BF01236280