Liver segmentation with 2.5D perpendicular UNets

被引:27
作者
Han, Lin [1 ,2 ]
Chen, Yuanhao [1 ,2 ]
Li, Jiaming [3 ]
Zhong, Bowei [1 ,2 ]
Lei, Yuzhu [1 ,2 ]
Sun, Minghui [1 ,2 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun 130022, Peoples R China
[2] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130022, Peoples R China
[3] Jilin Univ, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
Liver Segmentation; Res-UNet; Deep Learning; Model Fusion; Medical Imaging; CT;
D O I
10.1016/j.compeleceng.2021.107118
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Liver and hepatic tumor segmentation is a crucial yet challenging step during the screening and diagnosis of liver illnesses. Currently, accurate 3D segmentation deep learning models are large, while the smaller 2D ones are generally less accurate due to their small receptive fields. To reduce model sizes and increase segmentation accuracy, we propose 2.5D Perpendicular-UNet to fuse the segmentation results of three perpendicular 2.5D Res-UNets in the task of liver and hepatic tumor segmentation. Data augmentation, loss functions, and post-processing steps are customizable with our model. With a larger receptive field in three dimensions, our model outperforms 2D UNet models in accuracy, achieving 0.962 and 0.735 Dice scores for liver and tumor segmentation on the liver tumor segmentation dataset. Being smaller than 3D models, our 2.5D P-UNet trains using less data and GPU memory. This enables it to be deployed on low-configuration hardware, expanding its potential use.
引用
收藏
页数:8
相关论文
共 18 条
[1]  
Bilic P., ARXIV PREPRINT ARXIV
[2]  
Carneiro G, 2015, ARXIV PREPRINT ARXIV
[3]   Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing [J].
Chlebus, Grzegorz ;
Schenk, Andrea ;
Moltz, Jan Hendrik ;
van Ginneken, Bram ;
Hahn, Horst Karl ;
Meine, Hans .
SCIENTIFIC REPORTS, 2018, 8
[4]  
Ciresan D., 2012, ADV NEURAL INFORM PR, V25, P2843
[5]   Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets [J].
Heimann, Tobias ;
van Ginneken, Bram ;
Styner, Martin A. ;
Arzhaeva, Yulia ;
Aurich, Volker ;
Bauer, Christian ;
Beck, Andreas ;
Becker, Christoph ;
Beichel, Reinhard ;
Bekes, Gyoergy ;
Bello, Fernando ;
Binnig, Gerd ;
Bischof, Horst ;
Bornik, Alexander ;
Cashman, Peter M. M. ;
Chi, Ying ;
Cordova, Andres ;
Dawant, Benoit M. ;
Fidrich, Marta ;
Furst, Jacob D. ;
Furukawa, Daisuke ;
Grenacher, Lars ;
Hornegger, Joachim ;
Kainmueller, Dagmar ;
Kitney, Richard I. ;
Kobatake, Hidefumi ;
Lamecker, Hans ;
Lange, Thomas ;
Lee, Jeongjin ;
Lennon, Brian ;
Li, Rui ;
Li, Senhu ;
Meinzer, Hans-Peter ;
Nemeth, Gabor ;
Raicu, Daniela S. ;
Rau, Anne-Mareike ;
van Rikxoort, Eva M. ;
Rousson, Mikael ;
Rusko, Laszlo ;
Saddi, Kinda A. ;
Schmidt, Guenter ;
Seghers, Dieter ;
Shimizu, Akinobu ;
Slagmolen, Pieter ;
Sorantin, Erich ;
Soza, Grzegorz ;
Susomboon, Ruchaneewan ;
Waite, Jonathan M. ;
Wimmer, Andreas ;
Wolf, Ivo .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1251-1265
[6]   Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution [J].
Hu, Peijun ;
Wu, Fa ;
Peng, Jialin ;
Liang, Ping ;
Kong, Dexing .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (24) :8676-8698
[7]  
Jemal A, 2011, CA-CANCER J CLIN, V61, P134, DOI [10.3322/caac.21492, 10.3322/caac.20115, 10.3322/caac.20107]
[8]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[9]   V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation [J].
Milletari, Fausto ;
Navab, Nassir ;
Ahmadi, Seyed-Ahmad .
PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, :565-571
[10]  
Qi Dou, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P149, DOI 10.1007/978-3-319-46723-8_18