On commuting graphs of semisimple rings

被引:54
作者
Akbari, S
Ghandehari, A
Hadian, M
Mohammadian, A
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Inst Studies Theoret Phys & Math, Tehran, Iran
关键词
commuting graph; semisimple ring;
D O I
10.1016/j.laa.2004.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a non-commutative ring. The commuting graph of R denoted by Gamma(R), is a graph with vertex set R \ Z(R), and two distinct vertices a and b are adjacent if ab = ba. In this paper we investigate some properties of Gamma(R), whenever R is a finite semisimple ring. For any finite field F, we obtain minimum degree, maximum degree and clique number of Gamma(M-n, (F)). Also it is shown that for any two finite semisimple rings R and S, if Gamma(R) similar or equal to Gamma(S), then there are commutative semisimple rings R-1 and S-1 and semisimple ring T such that R similar or equal to T x R-1, S similar or equal to T x S-1 and \R-1\ = \S-1\. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:345 / 355
页数:11
相关论文
共 13 条
[1]   On the zero-divisor graph of a commutative ring [J].
Akbari, S ;
Mohammadian, A .
JOURNAL OF ALGEBRA, 2004, 274 (02) :847-855
[2]   When a zero-divisor graph is planar or a complete r-partite graph [J].
Akbari, S ;
Maimani, HR ;
Yassemi, S .
JOURNAL OF ALGEBRA, 2003, 270 (01) :169-180
[3]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[4]   COLORING OF COMMUTATIVE RINGS [J].
BECK, I .
JOURNAL OF ALGEBRA, 1988, 116 (01) :208-226
[5]   An analogue for rings of a group problem of P. Erdos and B. H. Neumann [J].
Bell, HE ;
Klein, AA ;
Kappe, LC .
ACTA MATHEMATICA HUNGARICA, 1997, 77 (1-2) :57-67
[6]  
Bondy J. A., 1977, GRAPH THEORY APPL
[7]   ORDERS FOR FINITE NONCOMMUTATIVE RINGS WITH UNITY [J].
ELDRIDGE, KE .
AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (05) :512-&
[8]  
Hoffman K. M., 1971, Linear Algebra
[9]  
Horn RA., 2013, Topics in Matrix Analysis, V2nd ed, DOI DOI 10.1017/CBO9780511840371
[10]  
Laffey T. J., 1972, B LOND MATH SOC, V4, P3