Advanced analysis and integration of remote sensing and in situ data for flood monitoring

被引:6
作者
Zingaro, Marina [1 ]
机构
[1] Univ Bari, Earth & GeoEnvironm Sci Dept, I-70125 Bari, Italy
来源
RENDICONTI ONLINE DELLA SOCIETA GEOLOGICA ITALIANA | 2021年 / 54卷
关键词
Flood monitoring; integrated methodologies; innovative system; applicative tools; WATER EXTENT; CATCHMENT; FRAMEWORK; MODEL;
D O I
10.3301/ROL.2021.08
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The increasingly occurrence of flood events claims our capacity to enhance risk reduction and damage mitigation. The current large availability of satellite data constitutes a fundamental resource for disciplines such as fluvial geomorphology and hydrology that exploit the new technologies and techniques to develop innovative approaches for improving flood phenomenon investigation. The present work, extracted from a PhD thesis, describes the application of advanced analyses and data integrations to detect and to monitor flood events. The new data fusion methodologies are tested in various areas, at different spatial and temporal scales, in various surface conditions. The results (flood extent maps, geomorphic index maps, flood inundation maps, etc.) demonstrate the advantage to use complementary information sources and the progress in addressing scientific research towards the production of operational systems.
引用
收藏
页码:41 / 47
页数:7
相关论文
共 24 条
[1]   A simple raster-based model for flood inundation simulation [J].
Bates, PD ;
De Roo, APJ .
JOURNAL OF HYDROLOGY, 2000, 236 (1-2) :54-77
[2]   Coupling multitemporal remote sensing with geomorphology and hydrological modeling for post flood recovery in the Strymonas dammed river basin (Greece) [J].
Capolongo, D. ;
Refice, A. ;
Bocchiola, D. ;
D'Addabbo, A. ;
Vouvalidis, K. ;
Soncini, A. ;
Zingaro, M. ;
Bovenga, F. ;
Stamatopoulos, L. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 651 :1958-1968
[3]   Flood Routing Model with Particle Filter-Based Data Assimilation for Flash Flood Forecasting in the Micro-Model of Lower Yellow River, China [J].
Chen, Minghong ;
Pang, Juanjuan ;
Wu, Pengxiang .
WATER, 2018, 10 (11)
[4]   Scale Object Selection (SOS) through a hierarchical segmentation by a multi-spectral per-pixel classification [J].
Chini, Marco ;
Chiancone, Alessandro ;
Stramondo, Salvatore .
PATTERN RECOGNITION LETTERS, 2014, 49 :214-223
[5]   DAFNE: A Matlab toolbox for Bayesian multi-source remote sensing and ancillary data fusion, with application to flood mapping [J].
D'Addabbo, Annarita ;
Refice, Alberto ;
Lovergine, Francesco P. ;
Pasquariello, Guido .
COMPUTERS & GEOSCIENCES, 2018, 112 :64-75
[6]   Flow Duration Curve from Satellite: Potential of a Lifetime SWOT Mission [J].
Domeneghetti, Alessio ;
Tarpanelli, Angelica ;
Grimaldi, Luca ;
Brath, Armando ;
Schumann, Guy .
REMOTE SENSING, 2018, 10 (07)
[7]   Development and evaluation of a framework for global flood hazard mapping [J].
Dottori, Francesco ;
Salamon, Peter ;
Bianchi, Alessandra ;
Alfieri, Lorenzo ;
Hirpa, Feyera Aga ;
Feyen, Luc .
ADVANCES IN WATER RESOURCES, 2016, 94 :87-102
[8]   Probabilistic Flood Mapping Using Synthetic Aperture Radar Data [J].
Giustarini, Laura ;
Hostache, Renaud ;
Kavetski, Dmitri ;
Chini, Marco ;
Corato, Giovanni ;
Schlaffer, Stefan ;
Matgen, Patrick .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12) :6958-6969
[9]   Remote Sensing-Derived Water Extent and Level to Constrain Hydraulic Flood Forecasting Models: Opportunities and Challenges [J].
Grimaldi, Stefania ;
Li, Yuan ;
Pauwels, Valentijn R. N. ;
Walker, Jeffrey P. .
SURVEYS IN GEOPHYSICS, 2016, 37 (05) :977-1034
[10]   RADAR DETECTION OF FLOODING BENEATH THE FOREST CANOPY - A REVIEW [J].
HESS, LL ;
MELACK, JM ;
SIMONETT, DS .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1990, 11 (07) :1313-1325