Chiral density wave in nuclear matter

被引:45
作者
Heinz, Achim [1 ]
Giacosa, Francesco [1 ,2 ]
Rischke, Dirk H. [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany
[2] Jan Kochanowski Univ, Inst Phys, PL-25406 Kielce, Poland
关键词
Chiral density wave; Nonzero density; Chiral restoration; PION-CONDENSATION; FINITE-TEMPERATURE; MULTIQUARK HADRONS; SCALAR MESONS; SYMMETRY; MODEL; PHASE; SIGMA; LAGRANGIANS; TRANSITION;
D O I
10.1016/j.nuclphysa.2014.09.027
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Inspired by recent work on inhomogeneous chiral condensation in cold, dense quark matter within models featuring quark degrees of freedom, we investigate the chiral density-wave solution in nuclear matter at zero temperature and nonvanishing baryon number density in the framework of the so-called extended linear sigma model (eLSM). The eLSM is an effective model for the strong interaction based on the global chiral symmetry of quantum chromodynamics (QCD). It contains scalar, pseudoscalar, vector, and axial-vector mesons as well as baryons. In the latter sector, the nucleon and its chiral partner are introduced as parity doublets in the mirror assignment. The eLSM simultaneously provides a good description of hadrons in vacuum as well as nuclear matter ground-state properties. We find that an inhomogeneous phase in the form of a chiral density wave is realized, but only for densities larger than 2.4 rho(0), where rho(0) is the nuclear matter ground-state density. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:34 / 42
页数:9
相关论文
共 90 条
[1]   Spin-isospin structure and pion condensation in nucleon matter [J].
Akmal, A ;
Pandharipande, VR .
PHYSICAL REVIEW C, 1997, 56 (04) :2261-2279
[2]   EVIDENCE FOR A SCALAR GLUEBALL [J].
AMSLER, C ;
CLOSE, FE .
PHYSICS LETTERS B, 1995, 353 (2-3) :385-390
[3]   Mesons beyond the naive quark model [J].
Amsler, C ;
Törnqvist, NA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2004, 389 (02) :61-117
[4]   The QCD transition temperature:: Results with physical masses in the continuum limit [J].
Aoki, Y. ;
Fodor, Z. ;
Katz, S. D. ;
Szabo, K. K. .
PHYSICS LETTERS B, 2006, 643 (01) :46-54
[5]   Chiral Magnetic Spirals [J].
Basar, Goekce E. ;
Dunne, Gerald V. ;
Kharzeev, Dmitri E. .
PHYSICAL REVIEW LETTERS, 2010, 104 (23)
[6]   FLUCTUATIONS AND LONG-RANGE ORDER IN FINITE-TEMPERATURE PION CONDENSATES [J].
BAYM, G ;
FRIMAN, BL ;
GRINSTEIN, G .
NUCLEAR PHYSICS B, 1982, 210 (02) :193-209
[7]   PION-CONDENSATION AT FINITE TEMPERATURE .1. MEAN FIELD-THEORY [J].
BAYM, G .
NUCLEAR PHYSICS A, 1981, 352 (03) :355-364
[8]   PION CONDENSATION IN NUCLEAR AND NEUTRON STAR MATTER [J].
BAYM, G .
PHYSICAL REVIEW LETTERS, 1973, 30 (26) :1340-1342
[9]   SIMPLE MODEL CALCULATION OF PION CONDENSATION IN NEUTRON MATTER [J].
BAYM, G ;
CAMPBELL, D ;
DASHEN, R ;
MANASSAH, J .
PHYSICS LETTERS B, 1975, 58 (03) :304-308
[10]   REVIEW OF PARTICLE PHYSICS Particle Data Group [J].
Beringer, J. ;
Arguin, J. -F. ;
Barnett, R. M. ;
Copic, K. ;
Dahl, O. ;
Groom, D. E. ;
Lin, C. -J. ;
Lys, J. ;
Murayama, H. ;
Wohl, C. G. ;
Yao, W. -M. ;
Zyla, P. A. ;
Amsler, C. ;
Antonelli, M. ;
Asner, D. M. ;
Baer, H. ;
Band, H. R. ;
Basaglia, T. ;
Bauer, C. W. ;
Beatty, J. J. ;
Belousov, V. I. ;
Bergren, E. ;
Bernardi, G. ;
Bertl, W. ;
Bethke, S. ;
Bichsel, H. ;
Biebel, O. ;
Blucher, E. ;
Blusk, S. ;
Brooijmans, G. ;
Buchmueller, O. ;
Cahn, R. N. ;
Carena, M. ;
Ceccucci, A. ;
Chakraborty, D. ;
Chen, M. -C. ;
Chivukula, R. S. ;
Cowan, G. ;
D'Ambrosio, G. ;
Damour, T. ;
de Florian, D. ;
de Gouvea, A. ;
DeGrand, T. ;
de Jong, P. ;
Dissertori, G. ;
Dobrescu, B. ;
Doser, M. ;
Drees, M. ;
Edwards, D. A. ;
Eidelman, S. .
PHYSICAL REVIEW D, 2012, 86 (01)