Optimizing the genetic composition of a translocation population: Incorporating constraints and conflicting objectives

被引:26
作者
Bragg, Jason G. [1 ]
Cuneo, Peter [2 ]
Sherieff, Ahamad [3 ]
Rossetto, Maurizio [1 ]
机构
[1] Royal Bot Gardens & Domain Trust, Natl Herbarium New South Wales, Sydney, NSW, Australia
[2] Royal Bot Gardens & Domain Trust, Australian Bot Garden, Australian PlantBank, Sydney, NSW, Australia
[3] NSW Off Environm & Heritage, Hurstville, NSW, Australia
关键词
angiosperms; conservation genetics; inbreeding; plant mating systems; CORE COLLECTIONS; CONSERVATION; RELATEDNESS; DIVERSITY; OPTIMIZATION; CONSEQUENCES; STRATEGIES; ALGORITHM; SET;
D O I
10.1111/1755-0998.13074
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Translocations of threatened species can reduce the risk of extinction from a catastrophic event. For plants, translocation consists of moving individuals, seeds, or cuttings from a native (source) population to a new site. Ideally a translocation population would be genetically diverse and consist of fit founding individuals. In practice, there are challenges to designing such a population, including constraints on the availability of material, and tradeoffs between different goals. Here, we present an approach for designing a translocation population that identifies sets of founders that are optimized according to multiple criteria (e.g., genetic diversity), while also conforming to constraints on the representation of different founders (e.g., propagation success). It uses flexible inputs, including SNP genotypes, matrices of similarity between individuals, and vectors of phenotype data. We apply the approach to a critically endangered plant, Hibbertia puberula subsp. glabrescens (Dilleniaceae), which was genotyped at thousands of SNP loci. The goals of minimizing genetic similarity among the founding individuals and maximizing genetic diversity were largely complementary: populations optimized for one of these criteria were near-optimal for the other. We also performed analyses in which we minimized genetic similarity among founding individuals while imposing selection (against hypothetical deleterious alleles, and against undesirable phenotypes, respectively), and here characterized sharp tradeoffs. This was useful in allowing the benefits of selection to be weighed against costs in terms of genetic similarity. In summary, we present an approach for designing a translocation population that allows flexible inputs, the imposition of realistic constraints, and examination of conflicting goals.
引用
收藏
页码:54 / 65
页数:12
相关论文
共 53 条
[1]   Harnessing the power of RADseq for ecological and evolutionary genomics [J].
Andrews, Kimberly R. ;
Good, Jeffrey M. ;
Miller, Michael R. ;
Luikart, Gordon ;
Hohenlohe, Paul A. .
NATURE REVIEWS GENETICS, 2016, 17 (02) :81-92
[2]  
[Anonymous], EVOL APPL
[3]  
[Anonymous], 2009, SPATIAL CONSERVATION
[4]  
[Anonymous], 1996, RESTORING DIVERSITY
[5]  
[Anonymous], 1975, CROP GENETIC RESOURC
[6]   A simulated annealing-based multiobjective optimization algorithm: AMOSA [J].
Bandyopadhyay, Sanghamitra ;
Saha, Sriparna ;
Maulik, Ujjwal ;
Deb, Kalyanmoy .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (03) :269-283
[7]   EFFECTS OF A CHANGE IN THE LEVEL OF INBREEDING ON THE GENETIC LOAD [J].
BARRETT, SCH ;
CHARLESWORTH, D .
NATURE, 1991, 352 (6335) :522-524
[8]  
BURGER R, 1995, EVOLUTION, V49, P151, DOI [10.2307/2410301, 10.1111/j.1558-5646.1995.tb05967.x]
[9]   FUNDAMENTAL CONCEPTS IN GENETICS The genetics of inbreeding depression [J].
Charlesworth, Deborah ;
Willis, John H. .
NATURE REVIEWS GENETICS, 2009, 10 (11) :783-796
[10]   A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems [J].
Das, I ;
Dennis, JE .
STRUCTURAL OPTIMIZATION, 1997, 14 (01) :63-69