Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties

被引:283
作者
Gudikandula, Krishna [1 ]
Maringanti, Singara Charya [1 ]
机构
[1] Kakatiya Univ, Dept Microbiol, Warangal 506009, Andhra Pradesh, India
关键词
silver nanoparticles; chemical reduction; biological reduction; antibacterial activity; EXTRACELLULAR BIOSYNTHESIS; FUNGUS; REDUCTION; MECHANISM;
D O I
10.1080/17458080.2016.1139196
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biogenic synthesis of nanoparticles offers an attractive alternate to chemical synthesis methods. Various hazard free, eco-friendly methods of synthesis of silver nanoparticles are in operation. In chemical reduction methods, the reducing agent is a chemical solution, whereas in biological ones, the collection of enzymes, especially nitrate reductase, plays this role. The highest antibacterial activity of silver nanoparticles synthesised by chemical and biological methods was found in Staphylococcus aureus and Escherichia coli. The paper aims to discuss some fundamental issues about non-biological methods and benefits about biological methods for silver nanoparticles synthesis and their antibacterial studies.
引用
收藏
页码:714 / 721
页数:8
相关论文
共 27 条
[1]   Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum [J].
Ahmad, A ;
Mukherjee, P ;
Senapati, S ;
Mandal, D ;
Khan, MI ;
Kumar, R ;
Sastry, M .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2003, 28 (04) :313-318
[2]   Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus [J].
Balaji, D. S. ;
Basavaraja, S. ;
Deshpande, R. ;
Mahesh, D. Bedre ;
Prabhakar, B. K. ;
Venkataraman, A. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2009, 68 (01) :88-92
[3]   Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum [J].
Basavaraja, S. ;
Balaji, S. D. ;
Lagashetty, Arunkumar ;
Rajasab, A. H. ;
Venkataraman, A. .
MATERIALS RESEARCH BULLETIN, 2008, 43 (05) :1164-1170
[4]   Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus [J].
Bfilainsa, KC ;
D'Souza, SF .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2006, 47 (02) :160-164
[5]  
Cao G., 2004, Nanostructures Nanomaterials: Synthesis, Properties Applications
[6]   Effect of alkaline ion on the mechanism and kinetics of chemical reduction of silver [J].
Chou, KS ;
Lu, YC ;
Lee, HH .
MATERIALS CHEMISTRY AND PHYSICS, 2005, 94 (2-3) :429-433
[7]   The study of deposited silver particulate films by simple method for efficient SERS [J].
Fang, JH ;
Zhong, CG ;
Mu, RW .
CHEMICAL PHYSICS LETTERS, 2005, 401 (1-3) :271-275
[8]   Silver Nanoparticles as Potential Antiviral Agents [J].
Galdiero, Stefania ;
Falanga, Annarita ;
Vitiello, Mariateresa ;
Cantisani, Marco ;
Marra, Veronica ;
Galdiero, Massimiliano .
MOLECULES, 2011, 16 (10) :8894-8918
[9]   PLASMID-DETERMINED SILVER RESISTANCE IN PSEUDOMONAS-STUTZERI ISOLATED FROM A SILVER MINE [J].
HAEFELI, C ;
FRANKLIN, C ;
HARDY, K .
JOURNAL OF BACTERIOLOGY, 1984, 158 (01) :389-392
[10]   The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers [J].
Jeong, SH ;
Yeo, SY ;
Yi, SC .
JOURNAL OF MATERIALS SCIENCE, 2005, 40 (20) :5407-5411