Optimal input design for uncertain max-plus linear systems

被引:5
作者
Wang, Cailu [1 ]
Tao, Yuegang [1 ]
Yan, Huaicheng [2 ]
机构
[1] Hebei Univ Technol, Sch Control Sci & Engn, Tianjin 300130, Peoples R China
[2] East China Univ Sci & Technol, Minist Educ, Key Lab Adv Control & Optimizat Chem Proc, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
approximate interval input; data transmission system; exact interval input; optimal input design; uncertain max-plus linear system; NONLINEAR-SYSTEMS; INTERVAL SYSTEMS; ROBUST-CONTROL; REACHABILITY; REALIZATION;
D O I
10.1002/rnc.4285
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the optimal input design for uncertain max-plus linear systems whose parameters are only known to belong to certain intervals. The exact interval input is introduced to minimize the regulating range of the input that ensures that the system can output at any specified value in the desired interval regardless of how the parameters vary in certain ranges. The optimal input design for uncertain max-plus linear systems is formulated as an optimal control problem that finds the maximum element of the set of exact interval inputs with respect to the order of max-plus interval vectors. This paper also considers the optimal approximate interval input of an uncertain max-plus linear system that has no exact interval input. A polynomial algorithm is developed to find the optimal interval input and optimal approximate interval input of an uncertain max-plus linear system. A data transmission system with parameter perturbations is employed as an example to demonstrate how the proposed results work in practical applications.
引用
收藏
页码:4816 / 4830
页数:15
相关论文
共 44 条
[1]   Computational techniques for reachability analysis of Max-Plus-Linear systems [J].
Adzkiya, Dieky ;
De Schutter, Bart ;
Abate, Alessandro .
AUTOMATICA, 2015, 53 :293-302
[2]   Max-Plus Control Design for Temporal Constraints Meeting in Timed Event Graphs [J].
Amari, Said ;
Demongodin, Isabel ;
Loiseau, Jean Jacques ;
Martinez, Claude .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (02) :462-467
[3]  
Baccelli F., 1992, Synchronization and Linearity
[4]   On the integer max-linear programming problem [J].
Butkovic, Peter ;
MacCaig, Marie .
DISCRETE APPLIED MATHEMATICS, 2014, 162 :128-141
[5]   Interval systems of max-separable linear equations [J].
Cechlárová, K ;
Cuninghame-Green, RA .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 340 (1-3) :215-224
[6]   Integrated adaptive robust control for multilateral teleoperation systems under arbitrary time delays [J].
Chen, Zheng ;
Pan, Ya-Jun ;
Gu, Jason .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (12) :2708-2728
[7]   A LINEAR-SYSTEM-THEORETIC VIEW OF DISCRETE-EVENT PROCESSES AND ITS USE FOR PERFORMANCE EVALUATION IN MANUFACTURING [J].
COHEN, G ;
DUBOIS, D ;
QUADRAT, JP ;
VIOT, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (03) :210-220
[8]   Modeling and Control of Weight-Balanced Timed Event Graphs in Dioids [J].
Cottenceau, Bertrand ;
Hardouin, Laurent ;
Boimond, Jean-Louis .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (05) :1219-1231
[9]  
Cuninghame-Green R. A., 1979, Lecture Notes in Economics and Mathematical Systems, V166
[10]   A note on the characteristic equation in the max-plus algebra [J].
De Schutter, B ;
De Moor, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 261 :237-250