Zeros of hyperelliptic integrals of the first kind for special hyperelliptic Hamiltonians of degree 7

被引:4
作者
Bakhshalizadeh, A. [1 ]
Asheghi, R. [1 ]
Hoseyni, R. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
关键词
Chebyshev's property; Hyperelliptic integrals of first kind; Hamiltonian of degree 7; Hilbert-Arnold problem;
D O I
10.1016/j.chaos.2017.06.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the Chebyshevs property of the three-dimensional vector space E = < J(0), J(1), J(2) >, where J(i)(h) = integral(H=h) x(i)dx/y and H(x,y)=1/2 y(2)+V(x) is a hyperelliptic Hamiltonian of degree 7. Our main result asserts that in two specific cases, namely (a) V'(x)=x(3) (x-4/7) (x-1)(2) and (b) V'(x) = x(x-2/7) (x-1)(4), E is an extended complete Chebyshev system. To this end, we use the criterion and the tools developed by GrauManosasVilladelprat in Trans. Amer. Math. Soc. in 2011. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:279 / 288
页数:10
相关论文
共 15 条
[1]  
Arnold V I., 1988, Geometrical Methods in the Theory of Ordinary Differential Equations, DOI [10.1007/978-3-662-11832-0, DOI 10.1007/978-3-662-11832-0]
[2]  
Arnold V.I., 1990, Adv. Soviet Math, V1, P1
[3]   The Chebyshev's property of certain hyperelliptic integrals of the first kind [J].
Asheghi, R. ;
Bakhshalizadeh, A. .
CHAOS SOLITONS & FRACTALS, 2015, 78 :162-175
[4]  
Gasull A, 2002, PAC J MATH, P202
[5]   Complete hyperelliptic integrals of the first kind and their non-oscillation [J].
Gavrilov, L ;
Iliev, ID .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (03) :1185-1207
[6]   Abelian integrals related to Morse polynomials and perturbations of plane Hamiltonian vector fields [J].
Gavrilov, L .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (02) :611-+
[7]   A CHEBYSHEV CRITERION FOR ABELIAN INTEGRALS [J].
Grau, M. ;
Manosas, F. ;
Villadelprat, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (01) :109-129
[8]  
Hilbert D., 1935, MATH PROBLEME GESAMM, P403
[9]  
Karlin S., 1966, TCHEBYCHEFF SYSTEMS
[10]   Bounding the number of zeros of certain Abelian integrals [J].
Manosas, F. ;
Villadelprat, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (06) :1656-1669