Proper spaces for the asymptotic convergence of solutions of porous medium equation

被引:3
作者
Wang, Liangwei [1 ]
Yin, Jingxue [2 ]
机构
[1] Chongqing Three Gorges Univ, Coll Math & Stat, Chongqing 404000, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
Proper spaces; Improper spaces; Asymptotic convergence; Porous medium equation; INITIAL VALUES; R-N; BEHAVIOR; ABSORPTION;
D O I
10.1016/j.nonrwa.2017.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the problem that a weighted L-infinity space W-v(R-N) is proper or not for the asymptotic convergence of solutions of the porous medium equation. We find that there exists a critical exponent V = sigma of the proper spaces for the asymptotic problem proposed by Alikakos and Rostamian (1984). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:261 / 270
页数:10
相关论文
共 26 条
[1]   ON THE UNIFORMIZATION OF THE SOLUTIONS OF THE POROUS-MEDIUM EQUATION IN RN [J].
ALIKAKOS, ND ;
ROSTAMIAN, R .
ISRAEL JOURNAL OF MATHEMATICS, 1984, 47 (04) :270-290
[2]  
[Anonymous], 1988, Rev. Mat. Iberoam, DOI DOI 10.4171/RMI/77
[3]  
[Anonymous], 2015, ATLANTIS STUDIES DIF
[4]   SOLUTIONS OF THE POROUS-MEDIUM EQUATION IN RN UNDER OPTIMAL CONDITIONS ON INITIAL VALUES [J].
BENILAN, P ;
CRANDALL, MG ;
PIERRE, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (01) :51-87
[5]   Asymptotics of the porous media equation via Sobolev inequalities [J].
Bonforte, M ;
Grillo, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 225 (01) :33-62
[6]  
Cazenave T, 2003, DISCRETE CONT DYN S, V9, P1105
[7]  
Cazenave T, 2003, ANN SCUOLA NORM-SCI, V2, P77
[8]  
Cazenave T, 2005, ADV DIFFERENTIAL EQU, V10, P361
[9]   MULTI-SCALE MULTI-PROFILE GLOBAL SOLUTIONS OF PARABOLIC EQUATIONS IN RN [J].
Cazenave, Thierry ;
Dickstein, Flavio ;
Weissler, Fred B. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (03) :449-472
[10]  
FRIEDMAN A, 1980, T AM MATH SOC, V262, P551