Standoff Mid-infrared Reflectance Spectroscopy using Quantum Cascade Laser for Mineral Identification

被引:2
|
作者
Parrot, Anais [1 ]
Vanier, Francis [1 ]
Blouin, Alain [1 ]
机构
[1] Natl Res Council Canada, 75 Mortagne Blvd, Boucherville, PQ J4B 6Y4, Canada
来源
SPIE FUTURE SENSING TECHNOLOGIES (2020) | 2020年 / 11525卷
关键词
Quantum cascade lasers; reflectance spectroscopy; mid-infrared; standoff measurements; minerals; mining;
D O I
10.1117/12.2579900
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, quantum cascade laser (QCL) mid-infrared (MIR) reflectance spectroscopy is used to discriminate silicate and carbonate minerals in a standoff measurement setting. The tunable external cavity QCL source that was used allows measurements from 5.2 mu m to 13.4 mu m wavelength, where the fundamental vibrational bands of silicates and carbonates are observed. Spectra measured from a half-core sample were analyzed using multivariate analysis to extract and identify the end-member spectra from the mixtures. The end-member spectra were compared and validated using the ASTER database spectra and the spectra measured on reference samples with the same QCL MIR reflectance spectroscopy setup. Spectra of minerals commonly found in the mining industry were compared: quartz, microcline, albite, chlorite, muscovite, biotite, calcite and dolomite. MIR reflectance spectroscopy using compact QCL sources allow rapid spectral measurements at standoff distances and high spatial resolution. All these advantages show the potential of QCL MIR reflectance spectroscopy for in-the-field mining applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Mid-Infrared Reflectance Spectroscopy Based on External Cavity Quantum Cascade Lasers for Mineral Characterization
    Vanier, Francis
    Parrot, Anais
    Padioleau, Christian
    Blouin, Alain
    APPLIED SPECTROSCOPY, 2022, 76 (03) : 361 - 368
  • [2] Remote mid-infrared photoacoustic spectroscopy with a quantum cascade laser
    Berer, Thomas
    Brandstetter, Markus
    Hochreiner, Armin
    Langer, Gregor
    Maerzinger, Wolfgang
    Burgholzer, Peter
    Lendl, Bernhard
    OPTICS LETTERS, 2015, 40 (15) : 3476 - 3479
  • [3] Surface-enhanced mid-infrared spectroscopy using a quantum cascade laser
    Hasenkampf, Anton
    Kroeger, Niels
    Schoenhals, Arthur
    Petrich, Wolfgang
    Pucci, Annemarie
    OPTICS EXPRESS, 2015, 23 (05): : 5670 - 5680
  • [4] Mid-infrared absorption spectroscopy using quantum cascade lasers
    Haibach, Fred
    Erlich, Adam
    Deutsch, Erik
    NEXT-GENERATION SPECTROSCOPIC TECHNOLOGIES IV, 2011, 8032
  • [5] Quantum cascade lasers for mid-infrared spectroscopy
    Hvozdara, L
    Pennington, N
    Kraft, A
    Karlowatz, M
    Mizaikoff, B
    VIBRATIONAL SPECTROSCOPY, 2002, 30 (01) : 53 - 58
  • [6] Mid-infrared photothermal heterodyne spectroscopy in a liquid crystal using a quantum cascade laser
    Mertiri, Alket
    Jeys, Thomas
    Liberman, Vladimir
    Hong, M. K.
    Mertz, Jerome
    Altug, Hatice
    Erramilli, Shyamsunder
    APPLIED PHYSICS LETTERS, 2012, 101 (04)
  • [7] Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser
    Wysocki, Gerard
    Weidmann, Damien
    OPTICS EXPRESS, 2010, 18 (25): : 26123 - 26140
  • [8] Mid-infrared Quantum Cascade Laser Spectroscopy for Noninvasive, In Vivo Glucose Sensing
    Werth, Alexandra
    Liakat, Sabbir
    Gmachl, Claire
    DIABETES, 2017, 66 : A614 - A614
  • [9] Broadband photothermal spectroscopy with a mid-infrared quantum cascade laser frequency comb
    Huang, Baichuan
    Gomolka, Grzegorz
    Mikkonen, Tommi
    Wysocki, Gerard
    OPTICS EXPRESS, 2025, 33 (02): : 2126 - 2137
  • [10] Mid-infrared quantum cascade lasers combs for spectroscopy
    Faist, J.
    Hugi, A.
    Riedi, S.
    Bismuto, A.
    Hinkov, B.
    Gini, E.
    Blaser, S.
    Beck, M.
    2012 23RD IEEE INTERNATIONAL SEMICONDUCTOR LASER CONFERENCE (ISLC), 2012, : 2 - 3