A 3D Plasmonic Antenna-Reactor for Nanoscale Thermal Hotspots and Gradients

被引:35
作者
Dongare, Pratiksha D. [1 ,2 ]
Zhao, Yage [3 ,4 ]
Renard, David [5 ,6 ]
Yang, Jian [2 ,7 ]
Neumann, Oara [1 ,2 ]
Metz, Jordin [6 ,8 ]
Yuan, Lin [5 ,6 ]
Alabastri, Alessandro [1 ]
Nordlander, Peter [1 ,4 ]
Halas, Naomi J. [6 ,9 ]
机构
[1] Rice Univ, Nanosyst Engn Res Ctr Nanotechnol Enabled Water T, Dept Elect & Comp Engn, Lab Nanophoton, Houston, TX 77005 USA
[2] Rice Univ, Appl Phys Grad Program, Houston, TX 77005 USA
[3] Rice Univ, Appl Phys Grad Program, Lab Nanophoton, Houston, TX 77005 USA
[4] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[5] Rice Univ, Lab Nanophoton, Houston, TX 77005 USA
[6] Rice Univ, Dept Chem, Houston, TX 77005 USA
[7] Rice Univ, Lab Nanophoton, Dept Elect & Comp Engn, Houston, TX 77005 USA
[8] Rice Univ, Nanosyst Engn Res Ctr Nanotechnol Enabled Water T, Houston, TX 77005 USA
[9] Rice Univ, Nanosyst Engn Res Ctr Nanotechnol Enabled Water T, Dept Phys & Astron, Dept Elect & Comp Engn,Lab Nanophoton, Houston, TX 77005 USA
关键词
plasmons; hotspots; absorption; light focusing; gradient; HIGH-HARMONIC GENERATION; FIELD ENHANCEMENT; OPTICAL-CONSTANTS; TEMPERATURE; SCATTERING; NANOSTRUCTURES; ABSORPTION; ALUMINUM; SIZE; SERS;
D O I
10.1021/acsnano.1c01046
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic nanoantennas focus light below the diffraction limit, creating strong field enhancements, typically within a nanoscale junction. Placing a nanostructure within the junction can greatly enhance the nanostructure's innate optical absorption, resulting in intense photothermal heating that could ultimately compromise both the nanostructure and the nanoantenna. Here, we demonstrate a three-dimensional "antennareactor" geometry that results in large nanoscale thermal gradients, inducing large local temperature increases in the confined nanostructure reactor while minimizing the temperature increase of the surrounding antenna. The nanostructure is supported on an insulating substrate within the antenna gap, while the antenna maintains direct contact with an underlying thermal conductor. Elevated local temperatures are quantified, and high local temperature gradients that thermally reshape only the internal reactor element within each antenna-reactor structure are observed. We also show that high local temperature increases of nominally 200 degrees C are achievable within antenna-reactors patterned into large extended arrays. This simple strategy can facilitate standoff optical generation of high-temperature hotspots, which may be useful in applications such as small-volume, high-throughput chemical processes, where reaction efficiencies depend exponentially on local temperature.
引用
收藏
页码:8761 / 8769
页数:9
相关论文
共 48 条
  • [1] Controlling the Heat Dissipation in Temperature-Matched Plasmonic Nanostructures
    Alabastri, Alessandro
    Malerba, Mario
    Calandrini, Eugenio
    Manjavacas, Alejandro
    De Angelis, Francesco
    Toma, Andrea
    Zaccaria, Remo Proietti
    [J]. NANO LETTERS, 2017, 17 (09) : 5472 - 5480
  • [2] High Temperature Nanoplasmonics: The Key Role of Nonlinear Effects
    Alabastri, Alessandro
    Toma, Andrea
    Malerba, Mario
    De Angelis, Francesco
    Zaccaria, Remo Proietti
    [J]. ACS PHOTONICS, 2015, 2 (01): : 115 - 120
  • [3] Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature
    Alabastri, Alessandro
    Tuccio, Salvatore
    Giugni, Andrea
    Toma, Andrea
    Liberale, Carlo
    Das, Gobind
    De Angelis, Francesco
    Di Fabrizio, Enzo
    Zaccaria, Remo Proietti
    [J]. MATERIALS, 2013, 6 (11) : 4879 - 4910
  • [4] Applications and challenges of thermoplasmonics
    Baffou, Guillaume
    Cichos, Frank
    Quidant, Romain
    [J]. NATURE MATERIALS, 2020, 19 (09) : 946 - 958
  • [5] Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination
    Baffou, Guillaume
    Polleux, Julien
    Rigneault, Herve
    Monneret, Serge
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (09) : 4890 - 4898
  • [6] Photoinduced Heating of Nanoparticle Arrays
    Baffou, Guillaume
    Berto, Pascal
    Urena, Esteban Bermudez
    Quidant, Romain
    Monneret, Serge
    Polleux, Julien
    Rigneault, Herve
    [J]. ACS NANO, 2013, 7 (08) : 6478 - 6488
  • [7] Thermal Signatures of Plasmonic Fano Interferences: Toward the Achievement of Nanolocalized Temperature Manipulation
    Baldwin, Christopher L.
    Bigelow, Nicholas W.
    Masiello, David J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (08): : 1347 - 1354
  • [8] Optical Antennas
    Bharadwaj, Palash
    Deutsch, Bradley
    Novotny, Lukas
    [J]. ADVANCES IN OPTICS AND PHOTONICS, 2009, 1 (03): : 438 - 483
  • [9] Active Far-Field Control of the Thermal Near-Field via Plasmon Hybridization
    Bhattacharjee, Ujjal
    West, Claire A.
    Jebeli, Seyyed Ali Hosseini
    Goldwyn, Harrison J.
    Kong, Xiang-Tian
    Hu, Zhongwei
    Beutler, Elliot K.
    Chang, Wei-Shun
    Willets, Katherine A.
    Link, Stephan
    Masiello, David J.
    [J]. ACS NANO, 2019, 13 (08) : 9655 - 9663
  • [10] Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry
    Brandt, Nathaniel C.
    Keller, Emily L.
    Frontiera, Renee R.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (16): : 3179 - 3185