Distances in graphs of girth 6 and generalised cages

被引:2
作者
Alochukwu, Alex [1 ]
Dankelmann, Peter [1 ]
机构
[1] Univ Johannesburg, Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Diameter; Radius; Girth; Cage; Generalised cage; Minimum degree; DIAMETER; RADIUS; ORDER; BOUNDS; NUMBER; EDGES; SIZE;
D O I
10.1016/j.dam.2021.02.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present bounds on the radius and diameter of graphs of girth at least 6 and for (C-4, C-5)-free graphs, i.e., graphs not containing cycles of length 4 or 5. We show that the diameter of a graph G of girth at least 6 is at most 3n/delta(2)-delta+1 - 1 and the radius is at most 3n/2(delta(2)-delta+1) + 10, where n is the order and delta the minimum degree of G. If delta - 1 is a prime power, then both bounds are sharp apart from an additive constant. For graphs of large maximum degree Delta, we show that these bounds can be improved to 3n-Delta delta/delta(2)-delta+1 - 3(delta-1)root Delta(delta-2)/delta(2)-delta+1 + 10 for the diameter, and 3n-3 Delta delta/2(delta(2)-delta+1) - 3(delta-1)root Delta(delta-2)/2(delta(2)-delta+1) + 22 for the radius. We further show that only slightly weaker bounds hold for (C-4, C-5)-free graphs. As a by-product we obtain a result on a generalisation of cages. For given delta, Delta is an element of N with Delta >= delta let n(delta, Delta, g) be the minimum order of a graph of girth g, minimum degree delta and maximum degree Delta. Then n(delta, Delta, 6) >= Delta delta + (delta - 1)root Delta(delta - 2) + 3/2 If delta - 1 is a prime power, then there exist infinitely many values of Delta such that, for delta constant and Delta large, n(delta, Delta, 6) = delta Delta + O(root Delta). (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:125 / 137
页数:13
相关论文
共 26 条
[1]   On size, order, diameter and edge-connectivity of graphs [J].
Ali, P. ;
Mazorodze, J. P. ;
Mukwembi, S. ;
Vetrik, T. .
ACTA MATHEMATICA HUNGARICA, 2017, 152 (01) :11-24
[2]   The radius of k-connected planar graphs with bounded faces [J].
Ali, Patrick ;
Dankelmann, Peter ;
Mukwembi, Simon .
DISCRETE MATHEMATICS, 2012, 312 (24) :3636-3642
[3]  
Amar D., 1983, MATH STUD, V75
[4]   THE MINIMUM ORDER OF NORMAL-CONNECTED NORMAL-REGULAR GRAPHS WITH SPECIFIED DIAMETERS [J].
BHATTACHARYA, D .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (04) :407-409
[5]  
Boben M, 2015, ELECTRON J COMB, V22
[6]   GRAPHS OF MAXIMUM DIAMETER [J].
CACCETTA, L ;
SMYTH, WF .
DISCRETE MATHEMATICS, 1992, 102 (02) :121-141
[7]   Diameter of 4-colourable graphs [J].
Czabarka, E. ;
Dankelmann, P. ;
Szekely, L. A. .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) :1082-1089
[8]  
Czabarka E., 2020, ARXIV PREPRINT ARXIV
[9]  
Dankelmann P, 2005, UTILITAS MATHEMATICA, V67, P205
[10]   The number of edges in a bipartite graph of given radius [J].
Dankelmann, P. ;
Swart, Henda C. ;
van den Berg, P. .
DISCRETE MATHEMATICS, 2011, 311 (8-9) :690-698