Generalized subinterval selection criteria for interval global optimization

被引:11
作者
Csendes, T [1 ]
机构
[1] Univ Szeged, Inst Informat, Szeged, Hungary
关键词
convergence properties; interval methods; global optimization; interval selection;
D O I
10.1023/B:NUMA.0000049489.44154.02
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The convergence properties of interval global optimization algorithms are studied which select the next subinterval to be subdivided with the largest value of the indicator pf (f(k), X) = (f(k)-F(X))/((F) over bar (X)-F(X)). This time the more general case is investigated, when the global minimum value is unknown, and thus its estimation f(k) in the iteration k has an important role. A sharp necessary and sufficient condition is given on the f(k) values approximating the global minimum value that ensure convergence of the optimization algorithm. The new theoretical result enables new, more efficient implementations that utilize the advantages of the pf* based interval selection rule, even for the more general case when no reliable estimation of the global minimum value is available.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 19 条
[1]  
[Anonymous], 1995, Handbook of global optimization, Nonconvex Optimization and its Applications
[2]  
Casado L. G., 1998, Proceedings of the 16th IASTED International Conference. Applied Informatics, P321
[3]   Heuristic rejection in interval global optimization [J].
Casado, LG ;
García, I ;
Csendes, T ;
Ruíz, VG .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 118 (01) :27-43
[4]   A heuristic rejection criterion in interval global optimization algorithms [J].
Casado, LG ;
García, I ;
Csendes, T .
BIT, 2001, 41 (04) :683-692
[5]   A new multisection technique in interval methods for global optimization [J].
Casado, LG ;
García, I ;
Csendes, T .
COMPUTING, 2000, 65 (03) :263-269
[6]   Subdivision direction selection in interval methods for global optimization [J].
Csendes, T ;
Ratz, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :922-938
[7]  
Csendes T., 2003, Reliable Computing, V9, P109, DOI 10.1023/A:1023086201037
[8]   New subinterval selection criteria for interval global optimization [J].
Csendes, T .
JOURNAL OF GLOBAL OPTIMIZATION, 2001, 19 (03) :307-327
[9]  
Hammer R., 1995, C++ toolbox for verified computing I: Basic numerical problems: Theory, algorithms and programs
[10]  
Hansen Eldon R., 1992, Global optimization using interval analysis