Outcome Analysis in Elective Electrical Cardioversion of Atrial Fibrillation Patients: Development and Validation of a Machine Learning Prognostic Model

被引:8
|
作者
Nunez-Garcia, Jean C. [1 ]
Sanchez-Puente, Antonio [1 ,2 ]
Sampedro-Gomez, Jesus [1 ,2 ]
Vicente-Palacios, Victor [1 ,3 ]
Jimenez-Navarro, Manuel [4 ,5 ]
Oterino-Manzanas, Armando [1 ]
Jimenez-Candil, Javier [1 ,2 ,6 ]
Dorado-Diaz, P. Ignacio [1 ,2 ]
Sanchez, Pedro L. [1 ,2 ,6 ]
机构
[1] Hosp Univ Salamanca IBSAL, Dept Cardiol, Salamanca 37007, Spain
[2] Inst Salud Carlos III, CIBERCV, Ctr Invest Biomed Red Enfermedades Cardiovasc, Monforte Lemos 3-5,Pabellon 11,Planta 0, Madrid 28029, Spain
[3] Philips Healthcare, Madrid 28050, Spain
[4] Hosp Virgen Victoria IBIMA, Dept Cardiol, Malaga 29010, Spain
[5] Univ Malaga, Fac Med, Malaga 29071, Spain
[6] Univ Salamanca, Dept Med, Salamanca 37007, Spain
关键词
machine-learning; electrical cardioversion; atrial fibrillation; rhythm control; pharmacologic cardioversion; SINUS RHYTHM; SUCCESS RATE; PREDICTION; RECURRENCE; MAINTENANCE; RISK;
D O I
10.3390/jcm11092636
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: The integrated approach to electrical cardioversion (EC) in atrial fibrillation (AF) is complex; candidates can resolve spontaneously while waiting for EC, and post-cardioversion recurrence is high. Thus, it is especially interesting to avoid the programming of EC in patients who would restore sinus rhythm (SR) spontaneously or present early recurrence. We have analyzed the whole elective EC of the AF process using machine-learning (ML) in order to enable a more realistic and detailed simulation of the patient flow for decision making purposes. Methods: The dataset consisted of electronic health records (EHRs) from 429 consecutive AF patients referred for EC. For analysis of the patient outcome, we considered five pathways according to restoring and maintaining SR: (i) spontaneous SR restoration, (ii) pharmacologic-cardioversion, (iii) direct-current cardioversion, (iv) 6-month AF recurrence, and (v) 6-month rhythm control. We applied ML classifiers for predicting outcomes at each pathway and compared them with the CHA2DS2-VASc and HATCH scores. Results: With the exception of pathway (iii), all ML models achieved improvements in comparison with CHA2DS2-VASc or HATCH scores (p < 0.01). Compared to the most competitive score, the area under the ROC curve (AUC-ROC) was: 0.80 vs. 0.66 for predicting (i); 0.71 vs. 0.55 for (ii); 0.64 vs. 0.52 for (iv); and 0.66 vs. 0.51 for (v). For a threshold considered optimal, the empirical net reclassification index was: +7.8%, +47.2%, +28.2%, and +34.3% in favor of our ML models for predicting outcomes for pathways (i), (ii), (iv), and (v), respectively. As an example tool of generalizability of ML models, we deployed our algorithms in an open-source calculator, where the model would personalize predictions. Conclusions: An ML model improves the accuracy of restoring and maintaining SR predictions over current discriminators. The proposed approach enables a detailed simulation of the patient flow through personalized predictions.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Meta-analysis of Clinical Outcomes of Electrical Cardioversion and Catheter Ablation in Patients with Atrial Fibrillation and Chronic Kidney Disease
    Diemberger, Igor
    Genovesi, Simonetta
    Massaro, Giulia
    Reggiani, Maria Letizia Bacchi
    Frisoni, Jessica
    Gorlato, Giulia
    Mauro, Erminio
    Padeletti, Margherita
    Vincenti, Antonio
    Boriani, Giuseppe
    CURRENT PHARMACEUTICAL DESIGN, 2018, 24 (24) : 2794 - 2801
  • [32] Machine Learning to Classify Intracardiac Electrical Patterns During Atrial Fibrillation Machine Learning of Atrial Fibrillation
    Alhusseini, Mahmood I.
    Abuzaid, Firas
    Rogers, Albert J.
    Zaman, Junaid A. B.
    Baykaner, Tina
    Clopton, Paul
    Bailis, Peter
    Zaharia, Matei
    Wang, Paul J.
    Rappel, Wouter-Jan
    Narayan, Sanjiv M.
    CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2020, 13 (08) : E008160
  • [33] Hemodynamic effects in patients with atrial fibrillation submitted to electrical cardioversion
    Giglioli, Cristina
    Nesti, Martina
    Cecchi, Emanuele
    Landi, Daniele
    Chiostri, Marco
    Gensini, Gian Franco
    Spini, Valentina
    Romano, Salvatore Mario
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2013, 168 (04) : 4447 - 4450
  • [34] Digital devices for heart rhythm monitoring in atrial fibrillation patients scheduled for elective electrical cardioversion
    Benezet-Mazuecos, Juan
    Alonso, Pau
    Lozano, Jose Miguel
    Salas, Jefferson
    Lorenzo, Oscar Gonzalez
    Rodriguez-Maro, Moises
    Narvaez, Irene
    Lozano, Alvaro
    Miracle, Angel
    Crosa, Julian
    Barrio, Isabel
    MEDICINA CLINICA, 2024, 163 (10): : 496 - 502
  • [35] Analysis of clinical risk factors of failed electrical cardioversion in patients with persistent atrial fibrillation or atrial flutter
    Ki-Hun Kim
    Ha-Young Choi
    Jino Park
    Yeo-Jeong Song
    Seunghwan Kim
    Dong-Kie Kim
    Sang-Hoon Seol
    Doo-Il Kim
    Pil-Sung Yang
    Hong Euy Lim
    Junbeum Park
    Jae-Min Shim
    Jinhee Ahn
    Sung Ho Lee
    Sung Il Im
    Ju Youn Kim
    International Journal of Arrhythmia, 24 (1)
  • [36] DEVELOPMENT OF A MACHINE LEARNING MODEL FOR PREDICTING 28-DAY MORTALITY OF SEPTIC PATIENTS WITH ATRIAL FIBRILLATION
    Wang, Ziwen
    Zhang, Linna
    Chao, Yali
    Xu, Meng
    Geng, Xiaojuan
    Hu, Xiaoyi
    SHOCK, 2023, 59 (03): : 400 - 408
  • [37] L-Arginine, Asymmetric Dimethylarginine and Rhythm Outcome after Electrical Cardioversion for Atrial Fibrillation
    Tveit, Arnljot
    Arnesen, Harald
    Smith, Pal
    Bratseth, Vibeke
    Seljeflot, Ingebjorg
    CARDIOLOGY, 2010, 117 (03) : 176 - 180
  • [38] Planning and monitoring of patients for electrical cardioversion for atrial fibrillation
    J. H. H. Deuling
    R. P. Vermeulen
    M. D. Smit
    J. M. A. A. van der Maaten
    H. M. Boersema
    A. F. M. van den Heuvel
    I. C. Van Gelder
    Netherlands Heart Journal, 2012, 20 : 148 - 154
  • [39] Echocardiographic Assessment of Left Atrial Mechanics in Patients with Atrial Fibrillation Undergoing Electrical Cardioversion: A Systematic Review
    Sonaglioni, Andrea
    Nicolosi, Gian Luigi
    Bruno, Antonino
    Lombardo, Michele
    Muti, Paola
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (21)
  • [40] Refined Electrical Cardioversion Outcome Prediction with Bipolar Surface Standard Leads for Patients in Persistent Atrial Fibrillation
    Cirugeda, Eva M.
    Calero, Sofia
    Quesada, Aurelio
    Hidalgo, Victor M.
    Rieta, Jose J.
    Alcaraz, Ratil
    2020 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB), 2020,