Outcome Analysis in Elective Electrical Cardioversion of Atrial Fibrillation Patients: Development and Validation of a Machine Learning Prognostic Model

被引:8
|
作者
Nunez-Garcia, Jean C. [1 ]
Sanchez-Puente, Antonio [1 ,2 ]
Sampedro-Gomez, Jesus [1 ,2 ]
Vicente-Palacios, Victor [1 ,3 ]
Jimenez-Navarro, Manuel [4 ,5 ]
Oterino-Manzanas, Armando [1 ]
Jimenez-Candil, Javier [1 ,2 ,6 ]
Dorado-Diaz, P. Ignacio [1 ,2 ]
Sanchez, Pedro L. [1 ,2 ,6 ]
机构
[1] Hosp Univ Salamanca IBSAL, Dept Cardiol, Salamanca 37007, Spain
[2] Inst Salud Carlos III, CIBERCV, Ctr Invest Biomed Red Enfermedades Cardiovasc, Monforte Lemos 3-5,Pabellon 11,Planta 0, Madrid 28029, Spain
[3] Philips Healthcare, Madrid 28050, Spain
[4] Hosp Virgen Victoria IBIMA, Dept Cardiol, Malaga 29010, Spain
[5] Univ Malaga, Fac Med, Malaga 29071, Spain
[6] Univ Salamanca, Dept Med, Salamanca 37007, Spain
关键词
machine-learning; electrical cardioversion; atrial fibrillation; rhythm control; pharmacologic cardioversion; SINUS RHYTHM; SUCCESS RATE; PREDICTION; RECURRENCE; MAINTENANCE; RISK;
D O I
10.3390/jcm11092636
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: The integrated approach to electrical cardioversion (EC) in atrial fibrillation (AF) is complex; candidates can resolve spontaneously while waiting for EC, and post-cardioversion recurrence is high. Thus, it is especially interesting to avoid the programming of EC in patients who would restore sinus rhythm (SR) spontaneously or present early recurrence. We have analyzed the whole elective EC of the AF process using machine-learning (ML) in order to enable a more realistic and detailed simulation of the patient flow for decision making purposes. Methods: The dataset consisted of electronic health records (EHRs) from 429 consecutive AF patients referred for EC. For analysis of the patient outcome, we considered five pathways according to restoring and maintaining SR: (i) spontaneous SR restoration, (ii) pharmacologic-cardioversion, (iii) direct-current cardioversion, (iv) 6-month AF recurrence, and (v) 6-month rhythm control. We applied ML classifiers for predicting outcomes at each pathway and compared them with the CHA2DS2-VASc and HATCH scores. Results: With the exception of pathway (iii), all ML models achieved improvements in comparison with CHA2DS2-VASc or HATCH scores (p < 0.01). Compared to the most competitive score, the area under the ROC curve (AUC-ROC) was: 0.80 vs. 0.66 for predicting (i); 0.71 vs. 0.55 for (ii); 0.64 vs. 0.52 for (iv); and 0.66 vs. 0.51 for (v). For a threshold considered optimal, the empirical net reclassification index was: +7.8%, +47.2%, +28.2%, and +34.3% in favor of our ML models for predicting outcomes for pathways (i), (ii), (iv), and (v), respectively. As an example tool of generalizability of ML models, we deployed our algorithms in an open-source calculator, where the model would personalize predictions. Conclusions: An ML model improves the accuracy of restoring and maintaining SR predictions over current discriminators. The proposed approach enables a detailed simulation of the patient flow through personalized predictions.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Functional tricuspid regurgitation and efficacy of electrical cardioversion in patients with atrial fibrillation and atrial functional mitral regurgitation
    Klimek, Katarzyna
    Tworek, Michal
    Klocek, Konrad
    Dolega, Julia
    Majta, Gabriela
    Marcinkiewicz, Klaudia
    Wrona-Kolasa, Karolina
    Cichon, Malgorzata
    Mizia-Stec, Katarzyna
    CARDIOLOGY JOURNAL, 2024, 31 (06) : 861 - 869
  • [22] Short-term outcome of early electrical cardioversion for atrial fibrillation in hyperthyroid versus euthyroid patients
    Ari, Hasan
    Gurdogan, Muhammet
    Erdogan, Ercan
    Ari, Selma
    Ata, Yusuf
    Tiryakioglu, Selma Kenar
    Akkaya, Mehmet
    Koca, Vedat
    Bozat, Tahsin
    CARDIOLOGY JOURNAL, 2012, 19 (01) : 53 - 60
  • [23] High-Sensitivity Troponin I and Rhythm Outcome after Electrical Cardioversion for Persistent Atrial Fibrillation
    Horjen, Anja Wiedswang
    Ulimoen, Sara Reinvik
    Seljeflot, Ingebjorg
    Smith, Pal
    Arnesen, Harald
    Norseth, Jon
    Tveit, Arnljot
    CARDIOLOGY, 2016, 133 (04) : 233 - 238
  • [24] Recurrence of arrhythmia and adverse cardiovascular events within 12 months of electrical cardioversion in patients with atrial fibrillation oral
    Turek, Lukasz
    Sadowski, Marcin
    Janion-Sadowska, Agnieszka
    Kurzawski, Jacek
    Domagala, Szymon
    Janion, Marianna
    MEDICAL STUDIES-STUDIA MEDYCZNE, 2022, 38 (04) : 273 - 286
  • [25] Ventricular rate during acute atrial fibrillation and outcome of electrical cardioversion: The FinCV Study
    Jaakkola, Jussi
    Hartikainen, Juha E. K.
    Kiviniemi, Tuomas
    Nuotio, Ilpo
    Nammas, Wail
    Gronberg, Toni
    Karmi, Anna
    Ylitalo, Antti
    Airaksinen, K. E. Juhani
    ANNALS OF MEDICINE, 2015, 47 (04) : 341 - 345
  • [26] Pretreatment with ACE inhibitors improves acute outcome of electrical cardioversion in patients with persistent atrial fibrillation
    Van Noord T.
    Crijns H.J.G.M.
    van den Berg M.P.
    Van Velhuisen D.J.
    Van Gelder I.C.
    BMC Cardiovascular Disorders, 5 (1)
  • [27] Multidimensional Fibrillatory Waves Analysis for Improved Electrical Cardioversion Outcome Prediction in Persistent Atrial Fibrillation
    Cirugeda, Eva M.
    Calero, Sofia
    Plancha, Eva
    Enero, Jose
    Rieta, Jose J.
    Alcaraz, Raul
    2020 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB), 2020,
  • [28] Pre- and post-treatment with amiodarone for elective electrical cardioversion of atrial fibrillation: a systematic review and meta-analysis
    Um, Kevin J.
    McIntyre, William F.
    Healey, Jeff S.
    Mendoza, Pablo A.
    Koziarz, Alex
    Amit, Guy
    Chu, Victor A.
    Whitlock, Richard P.
    Belley-Cote, Emilie P.
    EUROPACE, 2019, 21 (06): : 856 - 863
  • [29] Disappointing Success of Electrical Cardioversion for New-Onset Atrial Fibrillation in Cardiosurgical ICU Patients
    Arrigo, Mattia
    Jaeger, Natalie
    Seifert, Burkhardt
    Spahn, Donat R.
    Bettex, Dominique
    Rudiger, Alain
    CRITICAL CARE MEDICINE, 2015, 43 (11) : 2354 - 2359
  • [30] Gender Differences in Patients with Atrial Fibrillation Undergoing Electrical Cardioversion
    Alegret, Josep M.
    Vinolas, Xavier
    Martinez-Rubio, Antoni
    Pedrote, Alonso
    Beiras, Xulio
    Garcia-Sacristan, Jesus F.
    Crespo-Mancebo, Francisco
    Ruiz-Mateas, Francisco
    JOURNAL OF WOMENS HEALTH, 2015, 24 (06) : 466 - 470