Outcome Analysis in Elective Electrical Cardioversion of Atrial Fibrillation Patients: Development and Validation of a Machine Learning Prognostic Model

被引:8
|
作者
Nunez-Garcia, Jean C. [1 ]
Sanchez-Puente, Antonio [1 ,2 ]
Sampedro-Gomez, Jesus [1 ,2 ]
Vicente-Palacios, Victor [1 ,3 ]
Jimenez-Navarro, Manuel [4 ,5 ]
Oterino-Manzanas, Armando [1 ]
Jimenez-Candil, Javier [1 ,2 ,6 ]
Dorado-Diaz, P. Ignacio [1 ,2 ]
Sanchez, Pedro L. [1 ,2 ,6 ]
机构
[1] Hosp Univ Salamanca IBSAL, Dept Cardiol, Salamanca 37007, Spain
[2] Inst Salud Carlos III, CIBERCV, Ctr Invest Biomed Red Enfermedades Cardiovasc, Monforte Lemos 3-5,Pabellon 11,Planta 0, Madrid 28029, Spain
[3] Philips Healthcare, Madrid 28050, Spain
[4] Hosp Virgen Victoria IBIMA, Dept Cardiol, Malaga 29010, Spain
[5] Univ Malaga, Fac Med, Malaga 29071, Spain
[6] Univ Salamanca, Dept Med, Salamanca 37007, Spain
关键词
machine-learning; electrical cardioversion; atrial fibrillation; rhythm control; pharmacologic cardioversion; SINUS RHYTHM; SUCCESS RATE; PREDICTION; RECURRENCE; MAINTENANCE; RISK;
D O I
10.3390/jcm11092636
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: The integrated approach to electrical cardioversion (EC) in atrial fibrillation (AF) is complex; candidates can resolve spontaneously while waiting for EC, and post-cardioversion recurrence is high. Thus, it is especially interesting to avoid the programming of EC in patients who would restore sinus rhythm (SR) spontaneously or present early recurrence. We have analyzed the whole elective EC of the AF process using machine-learning (ML) in order to enable a more realistic and detailed simulation of the patient flow for decision making purposes. Methods: The dataset consisted of electronic health records (EHRs) from 429 consecutive AF patients referred for EC. For analysis of the patient outcome, we considered five pathways according to restoring and maintaining SR: (i) spontaneous SR restoration, (ii) pharmacologic-cardioversion, (iii) direct-current cardioversion, (iv) 6-month AF recurrence, and (v) 6-month rhythm control. We applied ML classifiers for predicting outcomes at each pathway and compared them with the CHA2DS2-VASc and HATCH scores. Results: With the exception of pathway (iii), all ML models achieved improvements in comparison with CHA2DS2-VASc or HATCH scores (p < 0.01). Compared to the most competitive score, the area under the ROC curve (AUC-ROC) was: 0.80 vs. 0.66 for predicting (i); 0.71 vs. 0.55 for (ii); 0.64 vs. 0.52 for (iv); and 0.66 vs. 0.51 for (v). For a threshold considered optimal, the empirical net reclassification index was: +7.8%, +47.2%, +28.2%, and +34.3% in favor of our ML models for predicting outcomes for pathways (i), (ii), (iv), and (v), respectively. As an example tool of generalizability of ML models, we deployed our algorithms in an open-source calculator, where the model would personalize predictions. Conclusions: An ML model improves the accuracy of restoring and maintaining SR predictions over current discriminators. The proposed approach enables a detailed simulation of the patient flow through personalized predictions.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Machine Learning Prediction for the Recurrence After Electrical Cardioversion of Patients With Persistent Atrial Fibrillation
    Kwon, Soonil
    Lee, Eunjung
    Ju, Hojin
    Ahn, Hyo-Jeong
    Lee, So-Ryoung
    Choi, Eue-Keun
    Suh, Jangwon
    Oh, Seil
    Rhee, Wonjong
    KOREAN CIRCULATION JOURNAL, 2023, 53 (10) : 677 - 689
  • [2] Predicting Electrical Cardioversion Outcome in Persistent Atrial Fibrillation Through Multiscale Entropy Analysis
    Cirugeda, E.
    Plancha, E.
    Hidalgo, V. M.
    Calero, S.
    Rieta, J. J.
    Alcaraz, R.
    2019 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2019,
  • [3] The Outcome of Electrical Cardioversion in Hyperthyroid Induced Atrial Fibrillation
    Shah, Hriday
    Hanna, Kerollos S.
    Kaur, Harkirat
    Alazzeh, Mohammad S.
    Thandavaram, Abhay
    Channar, Aneeta
    Purohit, Ansh
    Shrestha, Bijay
    Patel, Deepkumar
    Mohammed, Lubna
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (04)
  • [4] Optimal timing of electrical cardioversion in patients with persistent atrial fibrillation
    Naji, Franjo
    Vokac, Damijan
    Kanic, Vojko
    Sabovic, Miso
    MEDICAL SCIENCE MONITOR, 2010, 16 (10): : CR464 - CR468
  • [5] A review of factors associated with maintenance of sinus rhythm after elective electrical cardioversion for atrial fibrillation
    Ecker, Veronika
    Knoery, Charles
    Rushworth, Gordon
    Rudd, Ian
    Ortner, Astrid
    Begley, David
    Leslie, Stephen J.
    CLINICAL CARDIOLOGY, 2018, 41 (06) : 862 - 870
  • [6] Role for machine learning in sex-specific prediction of successful electrical cardioversion in atrial fibrillation?
    Vinter, Nicklas
    Frederiksen, Anne Sofie
    Albertsen, Andi Eie
    Lip, Gregory Y. H.
    Fenger-Gron, Morten
    Trinquart, Ludovic
    Frost, Lars
    Moller, Dorthe Svenstrup
    OPEN HEART, 2020, 7 (01):
  • [7] The Role of Anxiety in Patients With Persistent Atrial Fibrillation Undergoing Elective Cardioversion: An Observational Study
    Garcia-Izquierdo, Eusebio
    Fajardo-Simon, Lourdes
    Cruz-Utrilla, Alejandro
    Aguilera-Agudo, Cristina
    Jimenez-Sanchez, Diego
    Sanchez-Garcia, Manuel
    Lobo, Ana Blasco
    Escudier-Villa, Juan M.
    Ortega-Marcos, Javier
    Silva-Melchor, Lorenzo
    Castro-Urda, Victor
    Toquero-Ramos, Jorge
    de Arce-Cordon, Rosario
    Fernandez-Lozano, Ignacio
    PSYCHOSOMATIC MEDICINE, 2020, 82 (08): : 744 - 750
  • [8] The mechanical fibrillation pattern of the atrial myocardium is associated with acute and long-term success of electrical cardioversion in patients with persistent atrial fibrillation
    De Vos, Cees B.
    Limantoro, Ione
    Pisters, Ron
    Delhaas, Tammo
    Schotten, Ulrich
    Cheriex, Emile C.
    Tieleman, Robert G.
    Crijns, Harry J. G. M.
    HEART RHYTHM, 2014, 11 (09) : 1514 - 1521
  • [9] Prevalence and predictors of persistent sinus rhythm after elective electrical cardioversion for atrial fibrillation
    Castrichini, Matteo
    Restivo, Luca
    Fabris, Enrico
    Massa, Laura
    Di Meola, Raffaella
    Beltrame, Daria
    De Luca, Antonio
    Korcova, Renata
    Milo, Marco
    Sinagra, Gianfranco
    JOURNAL OF CARDIOVASCULAR MEDICINE, 2021, 22 (08) : 626 - 630
  • [10] The significance of transesophageal echocardiography in the preparation of patients with atrial fibrillation for elective electrical cardioversion
    Kalashnikova, O. S.
    ZAPOROZHYE MEDICAL JOURNAL, 2013, (03) : 28 - 31