A Density Theorem for Weighted Fekete Sets

被引:6
作者
Ameur, Yacin [1 ]
机构
[1] Lund Univ, Fac Sci, Dept Math, POB 118, S-22100 Lund, Sweden
关键词
POINTS;
D O I
10.1093/imrn/rnw161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a result concerning the spreading of weighted Fekete points in the plane. Consider a system {zeta(j)}(n)(1) of identical point-charges in the complex plane C, subject to an external field nQ, where Q is a suitable real-valued function, which we call the "external potential." The energy of the system is taken to be H-n(zeta(1), ... , zeta(n)) = Sigma(j not equal k) log 1/vertical bar zeta(j) - zeta(k)vertical bar + n Sigma(n)(j=1) Q(zeta(j)). (0.1) A configurationF(n) = {zeta(j)}(n)(1) that minimizes H-n is called an n-Fekete set in external potential Q; the points of a Fekete set are called Fekete points. The analogue of H-n for continuous charge distributions (measures) mu is the weighted logarithmic energy in external potential Q, defined by I-Q[mu] = integral integral(C2) log 1/vertical bar zeta - eta vertical bar d mu(zeta)d mu(eta) + integral(C) Qd mu. (0.2) The equilibrium measure sigma minimizes I-Q among all Borel probability measures. This measure is absolutely continuous and has the form d sigma(zeta) = chi(S)(zeta)Delta Q(zeta) dA(zeta), (0.3) where the set S := supp sigma is called the droplet in external field Q. (See below for further notation.) A well-known "discretized" result asserts that that the normalized counting measures mu(n) = 1/n Sigma(n)(1) delta(zeta j) at Fekete points converge to the equilibrium measure sigma, as n -> infinity. (See e. g., [30], Section III. 1.) In this note, we study finer structure of the distribution of Fekete points. We shall prove that Fekete points are maximally spread out in S relative to the conformal metric ds(2) = Delta Q(zeta)vertical bar d zeta vertical bar(2) in the sense of Beurling-Landau densities. Our results generalize those of [2].
引用
收藏
页码:5010 / 5046
页数:37
相关论文
共 38 条
[1]  
Ameur Y., 2016, BULK SINGULARITIES R
[2]  
Ameur Y., 2015, SCALING LIMITS RAN D
[3]  
Ameur Y., 14104132V4 ARXIV
[4]   RANDOM NORMAL MATRICES AND WARD IDENTITIES [J].
Ameur, Yacin ;
Hedenmalm, Haakan ;
Makarov, Nikolai .
ANNALS OF PROBABILITY, 2015, 43 (03) :1157-1201
[5]   On a problem for Ward's equation with a Mittag-Leffler potential [J].
Ameur, Yacin ;
Kang, Nam-Gyu .
BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (07) :968-975
[6]   Beurling-Landau densities of weighted Fekete sets and correlation kernel estimates [J].
Ameur, Yacin ;
Ortega-Cerda, Joaquim .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (07) :1825-1861
[7]  
[Anonymous], J I MATH JU IN PRESS
[8]  
Balogh F., 2015, ORTHOGONAL POLYNOMIA
[9]  
Bauerschmidt R., 2015, LOCAL DENSITY 2 DIME
[10]   Fekete points and convergence towards equilibrium measures on complex manifolds [J].
Berman, Robert ;
Boucksom, Sebastien ;
Nystrom, David Witt .
ACTA MATHEMATICA, 2011, 207 (01) :1-27