CONVOLUTION IDENTITIES INVOLVING THE CENTRAL BINOMIAL COEFFICIENTS AND CATALAN NUMBERS

被引:5
作者
Batir, Necdet [1 ]
Kucuk, Hakan [1 ]
Sorgun, Sezer [1 ]
机构
[1] Nevsehir Haci Bektas Veli Univ, Dept Math, TR-50300 Nevsehir, Turkey
关键词
Convolution Identity; Combinatorial Identity; Central Binomial Coefficient; Catalan Number; Harmonic Number;
D O I
10.22108/toc.2021.127505.1821
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize some convolution identities due to Witula and Qi et al. involving the central binomial coefficients and Catalan numbers. Our formula allows us to establish many new identities involving these important quantities and recovers some known identities in the literature. Also, we give new proofs of Shapiro's Catalan convolution and a famous identity of Hajos.
引用
收藏
页码:225 / 238
页数:14
相关论文
共 32 条
[11]  
Duarte R., 2013, SHORT PROOF FAMOUS C
[12]  
Duarte R, 2014, J INTEGER SEQ, V17
[13]  
Elezovic N, 2014, J INTEGER SEQ, V17
[14]  
Hajnal P., 2014, ELECT J COMBIN, V21, P10
[15]  
Kosby T, 2009, CATALAN NUMBERS APPL
[16]  
Li W.-H., 2020, FURTHER GENERALIZATI, DOI [10.31219/osf.io/zf9xu, DOI 10.31219/OSF.IO/ZF9XU]
[17]  
Lim D., 2021, RESULTS NONLINEAR AN, V4, P5
[18]   Identities involving Narayana polynomials and Catalan numbers [J].
Mansour, Toufik ;
Sun, Yidong .
DISCRETE MATHEMATICS, 2009, 309 (12) :4079-4088
[19]  
Nagy G. V., 2020, INTEGERS, V20, P17
[20]   A combinatorial proof of Shapiro's Catalan convolution [J].
Nagy, Gabor V. .
ADVANCES IN APPLIED MATHEMATICS, 2012, 49 (3-5) :391-396