Dance with Self-Attention: A New Look of Conditional Random Fields on Anomaly Detection in Videos

被引:32
|
作者
Purwanto, Didik [1 ]
Chen, Yie-Tarng [1 ]
Fang, Wen-Hsien [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Taipei, Taiwan
来源
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021) | 2021年
关键词
D O I
10.1109/ICCV48922.2021.00024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel weakly supervised approach for anomaly detection, which begins with a relation-aware feature extractor to capture the multi-scale convolutional neural network (CNN) features from a video. Afterwards, self-attention is integrated with conditional random fields (CRFs), the core of the network, to make use of the ability of self-attention in capturing the short-range correlations of the features and the ability of CRFs in learning the interdependencies of these features. Such a framework can learn not only the spatio-temporal interactions among the actors which are important for detecting complex movements, but also their short- and long-term dependencies across frames. Also, to deal with both local and non-local relationships of the features, a new variant of self-attention is developed by taking into consideration a set of cliques with different temporal localities. Moreover, a contrastive multi-instance learning scheme is considered to broaden the gap between the normal and abnormal instances, resulting in more accurate abnormal discrimination. Simulations reveal that the new method provides superior performance to the state-of-the-art works on the widespread UCF-Crime and ShanghaiTech datasets.
引用
收藏
页码:173 / 183
页数:11
相关论文
共 50 条
  • [1] Video anomaly detection based on hidden conditional random fields
    Chen, Yimin, 1600, Binary Information Press (10):
  • [2] Research on Anomaly Network Detection Based on Self-Attention Mechanism
    Hu, Wanting
    Cao, Lu
    Ruan, Qunsheng
    Wu, Qingfeng
    SENSORS, 2023, 23 (11)
  • [3] Applying Conditional Random Fields to Payload Anomaly Detection with CRFPAD
    Taub, Lawrence
    2013 PROCEEDINGS OF IEEE SOUTHEASTCON, 2013,
  • [4] Attention and self-attention in random forests
    Lev V. Utkin
    Andrei V. Konstantinov
    Stanislav R. Kirpichenko
    Progress in Artificial Intelligence, 2023, 12 : 257 - 273
  • [5] Attention and self-attention in random forests
    Utkin, Lev V.
    Konstantinov, Andrei V.
    Kirpichenko, Stanislav R.
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2023, 12 (03) : 257 - 273
  • [6] Unsupervised Video Anomaly Detection with Self-Attention based Feature Aggregating
    Ye, Zhenhao
    Li, Yanlong
    Cui, Zhichao
    Liu, Yuehu
    Li, Li
    Wang, Le
    Zhang, Chi
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 3551 - 3556
  • [7] Self-Attention for Cyberbullying Detection
    Pradhan, Ankit
    Yatam, Venu Madhav
    Bera, Padmalochan
    2020 INTERNATIONAL CONFERENCE ON CYBER SITUATIONAL AWARENESS, DATA ANALYTICS AND ASSESSMENT (CYBER SA 2020), 2020,
  • [8] DuSAG: An Anomaly Detection Method in Dynamic Graph Based on Dual Self-attention
    Lin, Weiqin
    Bao, Xianyu
    Li, Mark Junjie
    Gao, Zukang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT I, 2022, 13529 : 121 - 132
  • [9] Self-Attention Memory-Augmented Wavelet-CNN for Anomaly Detection
    Wu, Kun
    Zhu, Lei
    Shi, Weihang
    Wang, Wenwu
    Wu, Jin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (03) : 1374 - 1385
  • [10] LATTE: LSTM Self-Attention based Anomaly Detection in Embedded Automotive Platforms
    Kukkala, Vipin Kumar
    Thiruloga, Sooryaa Vignesh
    Pasricha, Sudeep
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2021, 20 (05)