Some fractional integral inequalities via h-Godunova-Levin preinvex function

被引:7
作者
Ali, Sabila [1 ]
Ali, Rana Safdar [1 ]
Vivas-Cortez, Miguel [2 ]
Mubeen, Shahid [3 ]
Rahman, Gauhar [4 ]
Nisar, Kottakkaran Sooppy [5 ]
机构
[1] Univ Lahore, Dept Math, Lahore, Pakistan
[2] Pontificia Univ Catolica Ecuador, Escuela Ciencias Fis & Matemat, Fac Ciencias Exactas & Nat, Av 12 Octubre 1076, Quito 17012184, Ecuador
[3] Univ Sargodha, Dept Math, POB 40100, Sargodha, Pakistan
[4] Hazara Univ, Dept Math & Stat, Mansehra, Pakistan
[5] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser 11991, Saudi Arabia
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 08期
关键词
fractional inequalities; h-Godunova-Levin convex and preinvex function; Hadamard inequality; FEJER TYPE INEQUALITIES; HERMITE-HADAMARD; CONVEX-FUNCTIONS; MAPPINGS;
D O I
10.3934/math.2022763
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In recent years, integral inequalities are investigated due to their extensive applications in several domains. The aim of the paper is to investigate certain new fractional integral inequalities which include Hermite-Hadamard inequality and different forms of trapezoid type inequalities related to Hermite-Hadamard inequality for h-Godunova-Levin preinvex function. Moreover, we compare our obtained results with the existing work in the literature and are represented by corollaries.
引用
收藏
页码:13832 / 13844
页数:13
相关论文
共 53 条
[1]   CHARACTERIZATIONS OF UNIFORM CONVEXITY FOR DIFFERENTIABLE FUNCTIONS [J].
Alabdali, Osama ;
Guessab, Allal ;
Schmeisser, Gerhard .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2019, 13 (03) :721-732
[2]   New refinements of the Hadamard inequality on coordinated convex function [J].
Almutairi, Ahoud ;
Kilicman, Adem .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
[3]   Some Integral Inequalities for h-Godunova-Levin Preinvexity [J].
Almutairi, Ohud ;
Kilicman, Adem .
SYMMETRY-BASEL, 2019, 11 (12)
[4]   New fractional inequalities of midpoint type via s-convexity and their application [J].
Almutairi, Ohud ;
Kilicman, Adem .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
[5]  
[Anonymous], 1906, Math. Naturwiss Anz. Ungar. Akad. Wiss
[6]  
[Anonymous], 2014, J. Adv. Math. Stud.
[7]   INEQUALITIES OF FEJER TYPE RELATED TO GENERALIZED CONVEX FUNCTIONS WITH APPLICATIONS [J].
Aslani, S. Mohammadi ;
Delavar, M. Rostamian ;
Vaezpour, S. M. .
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2018, 16 (01) :38-49
[8]   WHAT IS INVEXITY [J].
BENISRAEL, A ;
MOND, B .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1986, 28 :1-9
[9]   Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals [J].
Chen, Hua ;
Katugampola, Udita N. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) :1274-1291
[10]   Hermite-Hadamard-Fejer Inequality Related to Generalized Convex Functions via Fractional Integrals [J].
Delavar, M. Rostamian ;
Aslani, S. Mohammadi ;
De La Sen, M. .
JOURNAL OF MATHEMATICS, 2018, 2018