Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter

被引:306
作者
Zifcakova, Lucia [1 ]
Vetrovsky, Tomas [1 ]
Howe, Adina [2 ]
Baldrian, Petr [1 ]
机构
[1] Acad Sci Czech Republ, Inst Microbiol, Lab Environm Microbiol, Vvi, Videnska 1083, CR-14220 Prague 4, Czech Republic
[2] Iowa State Univ, Dept Agr & Biosyst Engn, Ames, IA 50011 USA
关键词
EXTRACELLULAR ENZYME-ACTIVITIES; DE-BRUIJN GRAPHS; RIBOSOMAL-RNA; FUNGAL COMMUNITIES; BOREAL FOREST; CD-HIT; IDENTIFICATION; SEQUENCES; BACTERIAL; LITTER;
D O I
10.1111/1462-2920.13026
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Understanding the ecology of coniferous forests is very important because these environments represent globally largest carbon sinks. Metatranscriptomics, microbial community and enzyme analyses were combined to describe the detailed role of microbial taxa in the functioning of the Picea abies-dominated coniferous forest soil in two contrasting seasons. These seasons were the summer, representing the peak of plant photosynthetic activity, and late winter, after an extended period with no photosynthate input. The results show that microbial communities were characterized by a high activity of fungi especially in litter where their contribution to microbial transcription was over 50%. Differences in abundance between summer and winter were recorded for 26-33% of bacterial genera and < 15% of fungal genera, but the transcript profiles of fungi, archaea and most bacterial phyla were significantly different among seasons. Further, the seasonal differences were larger in soil than in litter. Most importantly, fungal contribution to total microbial transcription in soil decreased from 33% in summer to 16% in winter. In particular, the activity of the abundant ectomycorrhizal fungi was reduced in winter, which indicates that plant photosynthetic production was likely one of the major drivers of changes in the functioning of microbial communities in this coniferous forest.
引用
收藏
页码:288 / 301
页数:14
相关论文
共 60 条
[1]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[2]  
Aronesty E., 2013, Open Bioinforma J, V7, P1, DOI DOI 10.2174/1875036201307010001
[3]   Soil eukaryotic functional diversity, a metatranscriptomic approach [J].
Bailly, Julie ;
Fraissinet-Tachet, Laurence ;
Verner, Marie-Christine ;
Debaud, Jean-Claude ;
Lemaire, Marc ;
Wesolowski-Louvel, Micheline ;
Marmeisse, Roland .
ISME JOURNAL, 2007, 1 (07) :632-642
[4]   Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change [J].
Baldrian, Petr ;
Snajdr, Jaroslav ;
Merhautova, Vera ;
Dobiasova, Petra ;
Cajthaml, Tomas ;
Valaskova, Vendula .
SOIL BIOLOGY & BIOCHEMISTRY, 2013, 56 :60-68
[5]   Active and total microbial communities in forest soil are largely different and highly stratified during decomposition [J].
Baldrian, Petr ;
Kolarik, Miroslav ;
Stursova, Martina ;
Kopecky, Jan ;
Valaskova, Vendula ;
Vetrovsky, Tomaas ;
Zifcakova, Lucia ;
Snajdr, Jaroslav ;
Ridl, Jakub ;
Vlcek, Cestmir ;
Voriskova, Jana .
ISME JOURNAL, 2012, 6 (02) :248-258
[6]   Current state and perspectives of fungal DNA barcoding and rapid identification procedures [J].
Begerow, Dominik ;
Nilsson, Henrik ;
Unterseher, Martin ;
Maier, Wolfgang .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 87 (01) :99-108
[7]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[8]   Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms [J].
Caporaso, J. Gregory ;
Lauber, Christian L. ;
Walters, William A. ;
Berg-Lyons, Donna ;
Huntley, James ;
Fierer, Noah ;
Owens, Sarah M. ;
Betley, Jason ;
Fraser, Louise ;
Bauer, Markus ;
Gormley, Niall ;
Gilbert, Jack A. ;
Smith, Geoff ;
Knight, Rob .
ISME JOURNAL, 2012, 6 (08) :1621-1624
[9]   Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling [J].
Churchland, Carolyn ;
Grayston, Sue J. .
FRONTIERS IN MICROBIOLOGY, 2014, 5
[10]   Roots and Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest [J].
Clemmensen, K. E. ;
Bahr, A. ;
Ovaskainen, O. ;
Dahlberg, A. ;
Ekblad, A. ;
Wallander, H. ;
Stenlid, J. ;
Finlay, R. D. ;
Wardle, D. A. ;
Lindahl, B. D. .
SCIENCE, 2013, 339 (6127) :1615-1618