Error Estimates of the Godunov Method for the Multidimensional Compressible Euler System

被引:4
|
作者
Lukacova-Medvid'ova, Maria [1 ]
She, Bangwei [2 ,3 ]
Yuan, Yuhuan [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, Staudingerweg 9, D-55128 Mainz, Germany
[2] Capital Normal Univ, Acad Multidisciplinary Studies, West 3rd Ring North Rd 105, Beijing 100048, Peoples R China
[3] Czech Acad Sci, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
关键词
Compressible Euler system; Error estimates; Relative energy; Godunov method; Consistency formulation; Strong solution; FINITE-VOLUME SCHEMES; SCALAR CONSERVATION-LAWS; CONVERGENCE;
D O I
10.1007/s10915-022-01843-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a priori error estimates of the Godunov method for the multidimensional compressible Euler system of gas dynamics. To this end we apply the relative energy principle and estimate the distance between the numerical solution and the strong solution. This yields also the estimates of the L-2-norms of the errors in density, momentum and entropy. Under the assumption, that the numerical density is uniformly bounded from below by a positive constant and that the energy is uniformly bounded from above and stays positive, we obtain a convergence rate of 1/2 for the relative energy in the L-1-norm, that is to say, a convergence rate of 1/4 for the L-2-error of the numerical solution. Further, under the assumption-the total variation of the numerical solution is uniformly bounded, we obtain the first order convergence rate for the relative energy in the L-1-norm, consequently, the numerical solution converges in the L-2-norm with the convergence rate of 1/2. The numerical results presented are consistent with our theoretical analysis.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Convergence of compressible Euler-Poisson system to incompressible Euler equations
    Wang, Shu
    Yang, Jianwei
    Luo, Dang
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (11) : 3408 - 3418
  • [42] Computable error bounds of multidimensional Euler inversion and their financial applications
    Zeng, Pingping
    Shi, Chao
    OPERATIONS RESEARCH LETTERS, 2022, 50 (06) : 726 - 731
  • [43] On convergence of approximate solutions to the compressible Euler system
    Eduard Feireisl
    Martina Hofmanová
    Annals of PDE, 2020, 6
  • [44] Error estimates of the backward Euler–Maruyama method for multi-valued stochastic differential equations
    Monika Eisenmann
    Mihály Kovács
    Raphael Kruse
    Stig Larsson
    BIT Numerical Mathematics, 2022, 62 : 803 - 848
  • [45] Improved error estimates for the finite volume and the MAC schemes for the compressible Navier-Stokes system
    Feireisl, Eduard
    Lukacova-Medvidova, Maria
    She, Bangwei
    NUMERISCHE MATHEMATIK, 2023, 153 (2-3) : 493 - 529
  • [46] On Error Estimates of a discontinuous Galerkin Method of the Boussinesq System of Equations
    Bajpai, Saumya
    Swain, Debendra Kumar
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024,
  • [47] Variational iteration method for solving compressible Euler equations
    赵国忠
    蔚喜军
    徐云
    朱江
    Chinese Physics B, 2010, 19 (07) : 32 - 38
  • [48] Hierarchical basis a posteriori error estimates for compressible Stokes flows
    Kweon, JR
    APPLIED NUMERICAL MATHEMATICS, 2000, 32 (01) : 53 - 68
  • [49] ERROR-ESTIMATES FOR THE IMPLICIT EULER APPROXIMATION OF AN EVOLUTION INEQUALITY
    LIPPOLD, G
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (11) : 1077 - 1089
  • [50] A new domain decomposition method for the compressible Euler equations
    Dolean, Victorita
    Nataf, Frederic
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (04): : 689 - 703