Error Estimates of the Godunov Method for the Multidimensional Compressible Euler System

被引:4
|
作者
Lukacova-Medvid'ova, Maria [1 ]
She, Bangwei [2 ,3 ]
Yuan, Yuhuan [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, Staudingerweg 9, D-55128 Mainz, Germany
[2] Capital Normal Univ, Acad Multidisciplinary Studies, West 3rd Ring North Rd 105, Beijing 100048, Peoples R China
[3] Czech Acad Sci, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
关键词
Compressible Euler system; Error estimates; Relative energy; Godunov method; Consistency formulation; Strong solution; FINITE-VOLUME SCHEMES; SCALAR CONSERVATION-LAWS; CONVERGENCE;
D O I
10.1007/s10915-022-01843-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a priori error estimates of the Godunov method for the multidimensional compressible Euler system of gas dynamics. To this end we apply the relative energy principle and estimate the distance between the numerical solution and the strong solution. This yields also the estimates of the L-2-norms of the errors in density, momentum and entropy. Under the assumption, that the numerical density is uniformly bounded from below by a positive constant and that the energy is uniformly bounded from above and stays positive, we obtain a convergence rate of 1/2 for the relative energy in the L-1-norm, that is to say, a convergence rate of 1/4 for the L-2-error of the numerical solution. Further, under the assumption-the total variation of the numerical solution is uniformly bounded, we obtain the first order convergence rate for the relative energy in the L-1-norm, consequently, the numerical solution converges in the L-2-norm with the convergence rate of 1/2. The numerical results presented are consistent with our theoretical analysis.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Error Estimates of the Godunov Method for the Multidimensional Compressible Euler System
    Mária Lukáčová-Medvid’ová
    Bangwei She
    Yuhuan Yuan
    Journal of Scientific Computing, 2022, 91
  • [2] Uniqueness of rarefaction waves in multidimensional compressible Euler system
    Feireisl, Eduard
    Kreml, Ondrej
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2015, 12 (03) : 489 - 499
  • [3] A posteriori error estimates for a compressible stokes system
    Kweon, JR
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (03) : 412 - 431
  • [4] Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number
    Dellacherie, Stephane
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (04) : 978 - 1016
  • [5] ERROR ESTIMATES OF A FINITE VOLUME METHOD FOR THE COMPRESSIBLE NAVIER-STOKES-FOURIER SYSTEM
    Basaric, Danica
    Lukacova-Medvidova, Maria
    Mizerova, Hana
    She, Bangwei
    Yuan, Yuhuan
    MATHEMATICS OF COMPUTATION, 2023, 92 (344) : 2543 - 2574
  • [6] Construction of modified Godunov-type schemes accurate at any Mach number for the compressible Euler system
    Dellacherie, S.
    Jung, J.
    Omnes, P.
    Raviart, P. -A.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (13): : 2525 - 2615
  • [7] Convergence and error estimates of a penalization finite volume method for the compressible Navier-Stokes system
    Lukacova-Medvidova, Maria
    She, Bangwei
    Yuan, Yuhuan
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [8] ERROR ESTIMATES FOR A NUMERICAL METHOD FOR THE COMPRESSIBLE NAVIER-STOKES SYSTEM ON SUFFICIENTLY SMOOTH DOMAINS
    Feireisl, Eduard
    Hosek, Radim
    Maltese, David
    Novotny, Antonin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (01): : 279 - 319
  • [9] A multidimensional piston problem for the Euler equations for compressible flow
    Chen, GQ
    Chen, SX
    Wang, DH
    Wang, ZJ
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (02) : 361 - 383
  • [10] A simple unsplit Godunov method for multidimensional MHD
    Stone, James M.
    Gardiner, Thomas
    NEW ASTRONOMY, 2009, 14 (02) : 139 - 148