A triviality result for semilinear parabolic equations

被引:1
作者
Castorina, Daniele [1 ]
Catino, Giovanni [2 ]
Mantegazza, Carlo [1 ]
机构
[1] Univ Napoli, Dipartimento Matemat & Applicaz, Via Cintia, I-80126 Naples, Italy
[2] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
来源
MATHEMATICS IN ENGINEERING | 2022年 / 4卷 / 01期
关键词
ancient solution; eternal solution; superlinear heat equation; LIOUVILLE-TYPE THEOREMS; SUPERLINEAR PROBLEMS; SINGULARITY;
D O I
10.3934/mine.2022002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show a triviality result for "pointwise" monotone in time, bounded "eternal" solutions of the semilinear heat equation u(t) = Delta u + vertical bar u vertical bar(p) on complete Riemannian manifolds of dimension n >= 5 with nonnegative Ricci tensor, when p is smaller than the critical Sobolev exponent n+2/n-2.
引用
收藏
页数:15
相关论文
共 14 条
[1]   LOCAL BEHAVIOR OF SOLUTIONS OF QUASILINEAR PARABOLIC EQUATIONS [J].
ARONSON, DG ;
SERRIN, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1967, 25 (02) :81-&
[2]  
Bidaut-Veron M., 1998, Initial blow-up for the solutions of a semilinear parabolic equation with source term, P189
[3]  
BidautVeron MF, 1996, COMMUN PART DIFF EQ, V21, P1035
[4]   Ancient solutions of superlinear heat equations on Riemannian manifolds [J].
Castorina, Daniele ;
Mantegazza, Carlo .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (03)
[5]   Ancient solutions of semilinear heat equations on Riemannian manifolds [J].
Castorina, Daniele ;
Mantegazza, Carlo .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2017, 28 (01) :85-101
[6]  
Gallot Sylvestre, 1990, Riemannian geometry, V2
[7]   Sequences of Laplacian Cut-Off Functions [J].
Gueneysu, Batu .
JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (01) :171-184
[8]   ON THE STABILITY AND INSTABILITY OF POSITIVE STEADY-STATES OF A SEMILINEAR HEAT-EQUATION IN RN [J].
GUI, CF ;
NI, WM ;
WANG, XF .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (09) :1153-1181
[9]  
Petersen P., 2006, GRADUATE TEXTS MATH
[10]   Singularity and decay estimates in superlinear problems via Liouville-type theorems,: I:: Elliptic equations and systems [J].
Polacik, Peter ;
Quittner, Pavol ;
Souplet, Philippe .
DUKE MATHEMATICAL JOURNAL, 2007, 139 (03) :555-579