Modelling one-dimensional crystal by using harmonic oscillator potential

被引:3
作者
Abdurrouf [1 ]
Nurhuda, M. [1 ]
Wiyono [1 ]
机构
[1] Brawijaya Univ, Dept Phys, Jl Vet, Malang 65145, Indonesia
来源
9TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE 2019 (BASIC 2019) | 2019年 / 546卷
关键词
D O I
10.1088/1757-899X/546/5/052001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Our recent developed filter method (Phys. Rev E 96(3), 033302, 2017) is applied here to investigate the energy spectrum and their corresponding wave function of one dimensional crystal. The periodic one dimensional potential is modelled by using one dimensional periodic harmonic oscillator, with variation on oscillator potential depth, quasi-potential depth, and crystal width. For energy less than the potential depth of the oscillator, the computational results reveal that the periodic harmonic oscillator produces a discrete spectrum, as the energy spectrum of a single harmonic potential. However, for energy almost equal to or greater than the depth of the potential oscillator, the periodic harmonic oscillator demonstrates the existence of pattern similar to energy band in crystal.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Chemical potential for the Bose gases in a one-dimensional harmonic trap [J].
Liu, T. G. ;
Niu, M. Y. ;
Liu, Q. H. .
EUROPEAN JOURNAL OF PHYSICS, 2010, 31 (03) :L51-L53
[42]   A One-Dimensional Inviscid and Compressible Fluid in a Harmonic Potential Well [J].
Philippe Choquard ;
Thomas Strömberg .
Acta Applicandae Mathematicae, 2007, 99 :161-183
[43]   One-dimensional Fermi polaron in a combined harmonic and periodic potential [J].
Doggen, E. V. H. ;
Korolyuk, A. ;
Torma, P. ;
Kinnunen, J. J. .
PHYSICAL REVIEW A, 2014, 89 (05)
[44]   A one-dimensional inviscid and compressible fluid in a harmonic potential well [J].
Choquard, Philippe ;
Stroemberg, Thomas .
ACTA APPLICANDAE MATHEMATICAE, 2007, 99 (02) :161-183
[45]   The Wigner localization of interacting electrons in a one-dimensional harmonic potential [J].
Telleria-Allika, Xabier ;
Azor, Miguel Escobar ;
Francois, Gregoire ;
Bendazzoli, Gian Luigi ;
Matxain, Jon M. ;
Lopez, Xabier ;
Evangelisti, Stefano ;
Berger, J. Arjan .
JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (17)
[46]   LATTICE THERMAL CONDUCTIVITY FOR A ONE-DIMENSIONAL HARMONIC ISOTOPICALLY DISORDERED CRYSTAL [J].
ALLEN, KR ;
FORD, J .
PHYSICAL REVIEW, 1968, 176 (03) :1046-&
[47]   Second harmonic generation in photonic-crystal one-dimensional media [J].
Zaporozhchenko, RG .
QUANTUM ELECTRONICS, 2002, 32 (01) :49-53
[48]   Transient diffusion and thermal processes in a finite one-dimensional harmonic crystal [J].
Krivtsov, A. M. ;
Murachev, A. S. ;
Tsvetkov, D., V .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (09)
[49]   Asymptotic study of damped one-dimensional oscillator with close to impact potential [J].
Gendelman, OV ;
Manevitch, LI .
DYNAMICS OF VIBRO-IMPACT SYSTEMS, 1999, :159-166
[50]   Exact calculation of the trace of the Birman-Schwinger operator of the one-dimensional harmonic oscillator perturbed by an attractive Gaussian potential [J].
Fassari, S. ;
Rinaldi, F. .
NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2019, 10 (06) :608-615