Modelling one-dimensional crystal by using harmonic oscillator potential

被引:3
作者
Abdurrouf [1 ]
Nurhuda, M. [1 ]
Wiyono [1 ]
机构
[1] Brawijaya Univ, Dept Phys, Jl Vet, Malang 65145, Indonesia
来源
9TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE 2019 (BASIC 2019) | 2019年 / 546卷
关键词
D O I
10.1088/1757-899X/546/5/052001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Our recent developed filter method (Phys. Rev E 96(3), 033302, 2017) is applied here to investigate the energy spectrum and their corresponding wave function of one dimensional crystal. The periodic one dimensional potential is modelled by using one dimensional periodic harmonic oscillator, with variation on oscillator potential depth, quasi-potential depth, and crystal width. For energy less than the potential depth of the oscillator, the computational results reveal that the periodic harmonic oscillator produces a discrete spectrum, as the energy spectrum of a single harmonic potential. However, for energy almost equal to or greater than the depth of the potential oscillator, the periodic harmonic oscillator demonstrates the existence of pattern similar to energy band in crystal.
引用
收藏
页数:6
相关论文
共 50 条
[31]   ANOMALOUS HEAT TRANSFER IN ONE-DIMENSIONAL DIATOMIC HARMONIC CRYSTAL [J].
Podolskaya, E. A. ;
Krivtsov, A. M. ;
Tsvetkov, D., V .
MATERIALS PHYSICS AND MECHANICS, 2018, 40 (02) :172-180
[32]   Heat Propagation in a One-Dimensional Harmonic Crystal on an Elastic Foundation [J].
Krivtsov, A. M. ;
Babenkov, M. B. ;
Tsvetkov, D., V .
PHYSICAL MESOMECHANICS, 2020, 23 (02) :109-119
[33]   Heat Propagation in a One-Dimensional Harmonic Crystal on an Elastic Foundation [J].
A. M. Krivtsov ;
M. B. Babenkov ;
D. V. Tsvetkov .
Physical Mesomechanics, 2020, 23 :109-119
[36]   Energy oscillations in a one-dimensional harmonic crystal on an elastic substrate [J].
Babenkov, M. B. ;
Krivtsov, A. M. ;
Tsvetkov, D. V. .
PHYSICAL MESOMECHANICS, 2016, 19 (03) :282-290
[37]   Energy oscillations in a one-dimensional harmonic crystal on an elastic substrate [J].
M. B. Babenkov ;
A. M. Krivtsov ;
D. V. Tsvetkov .
Physical Mesomechanics, 2016, 19 :282-290
[38]   Trial introduction of a complex potential function for perturbation that causes quantum mechanical transition in a one-dimensional harmonic oscillator [J].
Yamada, M .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 99 (03) :127-141
[39]   NOVEL SOLUTION OF THE ONE-DIMENSIONAL QUANTUM-MECHANICAL HARMONIC-OSCILLATOR [J].
FRADKIN, DM .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (05) :1705-1709
[40]   STATISTICAL-MECHANICS OF QUANTUM ONE-DIMENSIONAL DAMPED HARMONIC-OSCILLATOR [J].
BORGES, ENM ;
BORGES, ON ;
RIBEIRO, LAA .
CANADIAN JOURNAL OF PHYSICS, 1985, 63 (05) :600-604