Automatic seizure detection and seizure pattern morphology

被引:1
|
作者
Elezi, Lejla [1 ,4 ,5 ]
Koren, Johannes P. [1 ,2 ]
Pirker, Susanne [1 ,2 ]
Baumgartner, Christoph [1 ,2 ,3 ]
机构
[1] Dept Neurol, Clin Hietzing, Vienna, Austria
[2] Karl Landsteiner Inst Clin Epilepsy Res & Cognit N, Vienna, Austria
[3] Sigmund Freud Univ, Med Fac, Vienna, Austria
[4] Med Univ Vienna, Doctoral Programme Clin Neurosci, CLINS, Vienna, Austria
[5] Clin Hietzing, Dept Neurol, Wolkersbergenstr, A-1130 Vienna, Austria
关键词
Automatic seizure detection; EEG seizure pattern; Seizure onset zone; Detection rate; Detection delay; EPILEPTIC SEIZURES; EEG;
D O I
10.1016/j.clinph.2022.02.027
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective: We studied the influence of seizure pattern morphology on detection rate and detection delay of an automatic seizure detection system. We correlated seizure pattern morphology with seizure onset zone and assessed the influence of seizure onset zone on the performance of the seizure detection system.Methods: We analyzed 10.000 hours of EEG in 129 patients, 193 seizures in 67 patients were included in the final analysis. Seizure pattern morphologies were classified as rhythmic activity (alpha, theta and delta), paroxysmal fast activity, suppression of activity, repetitive epileptiform and arrhythmic activity. The seizure detection system EpiScan was compared with visual analysis.Results: Detection rates were significantly higher for rhythmic and repetitive epileptiform activities than for paroxysmal fast activity. Seizure patterns significantly correlated with seizure onset zone. Detection rate was significantly higher in temporal lobe (TL) seizures than in frontal lobe (FL) seizures. Detection delay tended to be shorter in seizures with rhythmic alpha or theta activity. TL seizures were significantly more often detected within 10 seconds than FL seizures.Conclusions: Seizure morphology is critical for optimization of automatic seizure detection algorithms.Significance: This study is unique in exploring the influence of seizure pattern morphology on automatic seizure detection and can help future research on seizure detection in epilepsy.(c) 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:214 / 220
页数:7
相关论文
共 50 条
  • [1] Automatic Seizure Detection in Epilepsy
    Baumgartner, Christoph
    Koren, Johannes P.
    KLINISCHE NEUROPHYSIOLOGIE, 2018, 49 (01) : 8 - 20
  • [2] Automatic seizure detection framework
    Gasca, F.
    Tech, R.
    Wagner, M.
    Kastner, J.
    Fuchs, M.
    EPILEPSIA, 2022, 63 : 99 - 99
  • [3] AUTOMATIC SEIZURE DETECTION - IMPROVEMENTS AND EVALUATION
    GOTMAN, J
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1990, 76 (04): : 317 - 324
  • [4] Channel selection for automatic seizure detection
    Duun-Henriksen, Jonas
    Kjaer, Troels Wesenberg
    Madsen, Rasmus Elsborg
    Remvig, Line Sofie
    Thomsen, Carsten Eckhart
    Sorensen, Helge Bjarup Dissing
    CLINICAL NEUROPHYSIOLOGY, 2012, 123 (01) : 84 - 92
  • [5] AUTOMATIC SEIZURE DETECTION IN NEWBORNS AND INFANTS
    GOTMAN, J
    ZHANG, J
    ROSENBLATT, B
    GOTTESMAN, R
    EPILEPSIA, 1995, 36 : J5 - J5
  • [6] EEG Seizure Pattern and Seizure Semiology
    Noachtar, Soheyl
    KLINISCHE NEUROPHYSIOLOGIE, 2018, 49 (01) : 21 - 29
  • [7] PROSPECTIVE EVALUATION OF AN AUTOMATIC SEIZURE DETECTION METHOD
    GOTMAN, J
    ALLARD, L
    BERGSMA, P
    EPILEPSIA, 1988, 29 (05) : 702 - 702
  • [8] Automatic Seizure Detection in a Mobile Multimedia Framework
    Muhammad, Ghulam
    Masud, Mehedi
    Amin, Syed Umar
    Alrobaea, Roobaea
    Alhamid, Mohammed F.
    IEEE ACCESS, 2018, 6 : 45372 - 45383
  • [9] Analogy of Algorithms for Automatic Epileptic Seizure Detection
    Kavya, B. S.
    Prasad, S. N.
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS ON ELECTRONICS, INFORMATION, COMMUNICATION & TECHNOLOGY (RTEICT-2020), 2020, : 63 - 68
  • [10] Automatic seizure detection using neutrosophic classifier
    Ansari, Abdul Quaiyum
    Sharma, Priyanka
    Tripathi, Manjari
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2020, 43 (03) : 1019 - 1028