Parameter estimation of Gaussian stationary processes using the generalized method of moments

被引:16
作者
Barboza, Luis A. [1 ]
Viens, Frederi G. [2 ]
机构
[1] Univ Costa Rica, CIMPA, San Jose, Costa Rica
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2017年 / 11卷 / 01期
基金
美国国家科学基金会;
关键词
Fractional Brownian motion; Ornstein Uhlenbeck process; method of moments; CENTRAL LIMIT-THEOREMS; LARGE-SAMPLE PROPERTIES; QUADRATIC VARIATIONS; MALLIAVIN CALCULUS; LONG-MEMORY; DISCRETE; INDEX; TIME;
D O I
10.1214/17-EJS1230
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the class of all stationary Gaussian process with explicit parametric spectral density. Under some conditions on the autocovariance function, we defined a GMM estimator that satisfies consistency and asymptotic normality, using the Breuer-Major theorem and previous results on ergodicity. This result is applied to the joint estimation of the three parameters of a stationary Ornstein-Uhlenbeck (fOU) process driven by a fractional Brownian motion. The asymptotic normality of its GMM estimator applies for any H in (0, 1) and under some restrictions on the remaining parameters. A numerical study is performed in the fOU case, to illustrate the estimator's practical performance when the number of data-points is moderate.
引用
收藏
页码:401 / 439
页数:39
相关论文
共 50 条
  • [1] Optimal rates for parameter estimation of stationary Gaussian processes
    Es-Sebaiy, Khalifa
    Viensb, Frederi G.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (09) : 3018 - 3054
  • [2] Berry-Esseen bounds for parameter estimation of general Gaussian processes
    Douissi, Soukaina
    Es-Sebaiy, Khalifa
    Viens, Frederi G.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 16 (01): : 633 - 664
  • [3] On parameter estimation for locally stationary long-memory processes
    Beran, Jan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (03) : 900 - 915
  • [4] A Bayesian Monte Carlo Markov Chain Method for Parameter Estimation of Fractional Differenced Gaussian Processes
    Olivares, G.
    Teferle, F. N.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (09) : 2405 - 2412
  • [5] OPTIMAL ESTIMATION OF GAUSSIAN MIXTURES VIA DENOISED METHOD OF MOMENTS
    Wu, Yihong
    Yang, Pengkun
    ANNALS OF STATISTICS, 2020, 48 (04) : 1981 - 2007
  • [6] BIPOWER VARIATION FOR GAUSSIAN PROCESSES WITH STATIONARY INCREMENTS
    Barndorff-Nielsen, Ole E.
    Manuel Corcuera, Jose
    Podolskij, Mark
    Woerner, Jeannette H. C.
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (01) : 132 - 150
  • [7] A Multiresolution Method for Parameter Estimation of Diffusion Processes
    Kou, S. C.
    Olding, Benjamin P.
    Lysy, Martin
    Liu, Jun S.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) : 1558 - 1574
  • [8] WAVELET ESTIMATION OF THE LONG MEMORY PARAMETER FOR HERMITE POLYNOMIAL OF GAUSSIAN PROCESSES
    Clausel, M.
    Roueff, F.
    Taqqu, M. S.
    Tudor, C.
    ESAIM-PROBABILITY AND STATISTICS, 2014, 18 : 42 - 76
  • [9] Semi-parametric estimation of the variogram scale parameter of a Gaussian process with stationary increments
    Azais, Jean-Marc
    Bachoc, Francois
    Lagnoux, Agnes
    Nguyen, Thi Mong Ngoc
    ESAIM-PROBABILITY AND STATISTICS, 2020, 24 : 842 - 882
  • [10] Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter
    Hu, Yaozhong
    Nualart, David
    Zhou, Hongjuan
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2019, 22 (01) : 111 - 142