Parameter estimation of Gaussian stationary processes using the generalized method of moments

被引:17
作者
Barboza, Luis A. [1 ]
Viens, Frederi G. [2 ]
机构
[1] Univ Costa Rica, CIMPA, San Jose, Costa Rica
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
Fractional Brownian motion; Ornstein Uhlenbeck process; method of moments; CENTRAL LIMIT-THEOREMS; LARGE-SAMPLE PROPERTIES; QUADRATIC VARIATIONS; MALLIAVIN CALCULUS; LONG-MEMORY; DISCRETE; INDEX; TIME;
D O I
10.1214/17-EJS1230
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the class of all stationary Gaussian process with explicit parametric spectral density. Under some conditions on the autocovariance function, we defined a GMM estimator that satisfies consistency and asymptotic normality, using the Breuer-Major theorem and previous results on ergodicity. This result is applied to the joint estimation of the three parameters of a stationary Ornstein-Uhlenbeck (fOU) process driven by a fractional Brownian motion. The asymptotic normality of its GMM estimator applies for any H in (0, 1) and under some restrictions on the remaining parameters. A numerical study is performed in the fOU case, to illustrate the estimator's practical performance when the number of data-points is moderate.
引用
收藏
页码:401 / 439
页数:39
相关论文
共 47 条
[1]  
[Anonymous], 1986, Handbook of Econometrics, DOI DOI 10.1016/S1573-4412(05)80005-4
[2]  
[Anonymous], [No title captured]
[3]   RECONSTRUCTING PAST TEMPERATURES FROM NATURAL PROXIES AND ESTIMATED CLIMATE FORCINGS USING SHORT- AND LONG-MEMORY MODELS [J].
Barboza, Luis ;
Li, Bo ;
Tingley, Martin P. ;
Viens, Frederi G. .
ANNALS OF APPLIED STATISTICS, 2014, 8 (04) :1966-2001
[4]  
BARDET J.M., 2000, Statistical Inference for Stochastic Processes, V3, P85
[5]  
Beran J., 1994, MONOGRAPHS STAT APPL, V61
[6]  
Bierme H., 2008, ESAIM-PROBAB STAT, V12, P30
[7]   Central Limit Theorems and Quadratic Variations in terms of Spectral Density [J].
Bierme, Hermine ;
Bonami, Aline ;
Leon, Jose R. .
ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 :362-395
[8]   CENTRAL LIMIT-THEOREMS FOR NON-LINEAR FUNCTIONALS OF GAUSSIAN FIELDS [J].
BREUER, P ;
MAJOR, P .
JOURNAL OF MULTIVARIATE ANALYSIS, 1983, 13 (03) :425-441
[9]  
Brockwell P., 2009, SPRINGER SERIES STAT
[10]   Parameter estimation for the discretely observed fractional Ornstein-Uhlenbeck process and the Yuima R package [J].
Brouste, Alexandre ;
Iacus, Stefano M. .
COMPUTATIONAL STATISTICS, 2013, 28 (04) :1529-1547