Facile synthesis of 3D nitrogen-doped graphene aerogel nanomeshes with hierarchical porous structures for applications in high-performance supercapacitors

被引:13
|
作者
Su, Xiao-Li [1 ]
Cheng, Ming-Yu [1 ]
Fu, Lin [1 ]
Zheng, Guang-Ping [2 ]
Zheng, Xiu-Cheng [1 ,3 ]
Yang, Jing-He [4 ]
Guan, Xin-Xin [1 ,3 ]
机构
[1] Zhengzhou Univ, Coll Chem & Mol Engn, Zhengzhou 450001, Peoples R China
[2] Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[3] Nankai Univ, Minist Educ, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
[4] Zhengzhou Univ, Sch Chem Engn & Energy, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTRODE MATERIAL; HOLEY GRAPHENE; CARBON; FABRICATION; COMPOSITES; REDUCTION; NETWORK; GROWTH;
D O I
10.1039/c7nj00440k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D nitrogen-doped graphene aerogel nanomeshes (N-GANMs) with hierarchical porous structures were facilely synthesized from graphene oxide and urea using iron nitrate as the etching agent. The resulting materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and N-2 adsorption-desorption. The supercapacitor performance was characterized by cyclic voltammetry, galvanostatic charge discharge, and electrochemical impedance spectroscopy, respectively. Compared with the bare graphene aerogel (GA), N-GANMs showed higher specific surface area, more abundant meso-macroporous pores, and much better electrochemical properties. The specific capacitance of N-GANMs was as high as 345.8 F g(-1), which was much higher than that of GA and most of the reported carbon-based materials, and the value remains at about 321.0 F g(-1) over 2000 cycles at 1.0 A g(-1) in 2.0 M KOH. In addition, the N-GANMs demonstrated a high energy density of 20.82 W h kg(-1) at a power density of 449.97 W kg(-1) and their cycle performance remained approximately 100% after 10000 cycles at 5.0 A g(-1) in 1.0 M Na2SO4. The excellent behaviors might have originated from their hierarchical porous structures and the incorporation of nitrogen.
引用
收藏
页码:5291 / 5296
页数:6
相关论文
共 50 条
  • [41] Synthesis of nitrogen-doped mesoporous carbon for high-performance supercapacitors
    Liang, Kehan
    Wang, Wenjing
    Yu, Yifeng
    Liu, Lei
    Lv, Haijun
    Zhang, Yue
    Chen, Aibing
    NEW JOURNAL OF CHEMISTRY, 2019, 43 (06) : 2776 - 2782
  • [42] Nitrogen-doped mesoporous reduced graphene oxide for high-performance supercapacitors
    Viet Hung Pham
    Thuy-Duong Nguyen-Phan
    Jang, Jinhee
    Thi Diem Tuyet Vu
    Lee, Yoon Jae
    Song, In Kyu
    Shin, Eun Woo
    Chung, Jin Suk
    RSC ADVANCES, 2014, 4 (43): : 22455 - 22462
  • [43] Synthesis of nitrogen-doped hierarchical porous carbons from peanut shell as a promising electrode material for high-performance supercapacitors
    Jiang, Xiaochen
    Guo, Feiqiang
    Jia, Xiaopeng
    Zhan, Yinbo
    Zhou, Huiming
    Qian, Lin
    JOURNAL OF ENERGY STORAGE, 2020, 30
  • [44] Nitrogen-doped graphene forests as electrodes for high-performance wearable supercapacitors
    Wang, Mei
    Ma, Yifei
    ELECTROCHIMICA ACTA, 2017, 250 : 320 - 326
  • [45] Facile Synthesis of High-Performance Nitrogen-Doped Hierarchically Porous Carbon for Catalytic Oxidation
    Yang, Zhe
    Duan, Xiaoguang
    Wang, Jun
    Li, Yang
    Fan, Xiaobin
    Zhang, Fengbao
    Zhang, Guoliang
    Peng, Wenchao
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (10) : 4236 - 4243
  • [46] Hierarchical Nanostructures of Nitrogen-Doped Porous Carbon Polyhedrons Confined in Carbon Nanosheets for High-Performance Supercapacitors
    Zhao, Zhe
    Liu, Siliang
    Zhu, Jixin
    Xu, Jingsan
    Li, Le
    Huang, Zhaoqi
    Zhang, Chao
    Liu, Tianxi
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (23) : 19871 - 19880
  • [47] Molten salt-confined construction of nitrogen-doped hierarchical porous carbon for high-performance supercapacitors
    Liu, Huichao
    Yao, Xiaoshu
    Song, Hua
    Hou, Wenjing
    Chang, Yunzhen
    Zhang, Ying
    Zhu, Sheng
    Li, Yanping
    Zhao, Yun
    Han, Gaoyi
    DIAMOND AND RELATED MATERIALS, 2022, 128
  • [48] Hierarchical porous covalent organic framework/graphene aerogel electrode for high-performance supercapacitors
    An, Ning
    Guo, Zhen
    Xin, Jiao
    He, Yuanyuan
    Xie, Kefeng
    Sun, Daming
    Dong, Xiuyan
    Hu, Zhongai
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (31) : 16824 - 16833
  • [49] Facile and Tunable Synthesis of Nitrogen- Doped Graphene with Different Microstructures for High-Performance Supercapacitors
    Liang, Jiyuan
    Wang, Zhen
    Huang, Litao
    Zou, Pan
    Liu, Xiaolang
    Ni, Qian
    Wang, Xinyu
    Wang, Wenjun
    Tao, Runming
    ACS MATERIALS LETTERS, 2023, 5 (04): : 944 - 954
  • [50] In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high performance supercapacitors
    Jeon, Ju-Won
    Nune, Satish
    Lutkenhaus, Jodie L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248