Facile synthesis of 3D nitrogen-doped graphene aerogel nanomeshes with hierarchical porous structures for applications in high-performance supercapacitors

被引:13
|
作者
Su, Xiao-Li [1 ]
Cheng, Ming-Yu [1 ]
Fu, Lin [1 ]
Zheng, Guang-Ping [2 ]
Zheng, Xiu-Cheng [1 ,3 ]
Yang, Jing-He [4 ]
Guan, Xin-Xin [1 ,3 ]
机构
[1] Zhengzhou Univ, Coll Chem & Mol Engn, Zhengzhou 450001, Peoples R China
[2] Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[3] Nankai Univ, Minist Educ, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
[4] Zhengzhou Univ, Sch Chem Engn & Energy, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTRODE MATERIAL; HOLEY GRAPHENE; CARBON; FABRICATION; COMPOSITES; REDUCTION; NETWORK; GROWTH;
D O I
10.1039/c7nj00440k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D nitrogen-doped graphene aerogel nanomeshes (N-GANMs) with hierarchical porous structures were facilely synthesized from graphene oxide and urea using iron nitrate as the etching agent. The resulting materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and N-2 adsorption-desorption. The supercapacitor performance was characterized by cyclic voltammetry, galvanostatic charge discharge, and electrochemical impedance spectroscopy, respectively. Compared with the bare graphene aerogel (GA), N-GANMs showed higher specific surface area, more abundant meso-macroporous pores, and much better electrochemical properties. The specific capacitance of N-GANMs was as high as 345.8 F g(-1), which was much higher than that of GA and most of the reported carbon-based materials, and the value remains at about 321.0 F g(-1) over 2000 cycles at 1.0 A g(-1) in 2.0 M KOH. In addition, the N-GANMs demonstrated a high energy density of 20.82 W h kg(-1) at a power density of 449.97 W kg(-1) and their cycle performance remained approximately 100% after 10000 cycles at 5.0 A g(-1) in 1.0 M Na2SO4. The excellent behaviors might have originated from their hierarchical porous structures and the incorporation of nitrogen.
引用
收藏
页码:5291 / 5296
页数:6
相关论文
共 50 条
  • [41] Facile Synthesis of Nitrogen-Doped Microporous Carbon Spheres for High Performance Symmetric Supercapacitors
    Liang, Zhongguan
    Liu, Hao
    Zeng, Jianping
    Zhou, Jianfei
    Li, Hongjian
    Xia, Hui
    NANOSCALE RESEARCH LETTERS, 2018, 13
  • [42] FACILE SYNTHESIS NITROGEN-DOPED POROUS CARBON BY PYROLYZING BTA WITH EXCELLENT SUPERCAPACITANCE PERFORMANCE
    Liu, Dong
    Wu, Shiya
    Ding, Yigang
    Hu, Yongming
    SURFACE REVIEW AND LETTERS, 2022, 29 (03)
  • [43] Facile and scalable synthesis of nitrogen-doped ordered mesoporous carbon for high performance supercapacitors
    Fan, Lei
    Sun, Peizheng
    Yang, Li
    Xu, Zhilong
    Han, Jie
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 37 (01) : 166 - 175
  • [44] Dimensional tailoring of nitrogen-doped graphene for high performance supercapacitors
    Lee, Seung Yong
    Choi, Chang Hyuck
    Chung, Min Wook
    Chung, Jae Hoon
    Woo, Seong Ihl
    RSC ADVANCES, 2016, 6 (60): : 55577 - 55583
  • [45] Ternary nitrogen-doped graphene/nickel ferrite/polyaniline nanocemposites for high-performance supercapacitors
    Wang, Wenjuan
    Hao, Qingli
    Lei, Wu
    Xia, Xifeng
    Wang, Xin
    JOURNAL OF POWER SOURCES, 2014, 269 : 250 - 259
  • [46] Facile and controllable synthesis of N/P co-doped graphene for high-performance supercapacitors
    Xia, Kaisheng
    Huang, Zhiyuan
    Zheng, Lin
    Han, Bo
    Gao, Qiang
    Zhou, Chenggang
    Wang, Hongquan
    Wu, Jinping
    JOURNAL OF POWER SOURCES, 2017, 365 : 380 - 388
  • [47] Nitrogen-doped porous 3D graphene with enhanced supercapacitor properties
    Sun, Hong-Juan
    Liu, Bo
    Peng, Tong-Jiang
    Zhao, Xiao-Long
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (18) : 13100 - 13110
  • [48] Nitrogen-doped reduced graphene oxide/MoS2 'nanoflower' composites for high-performance supercapacitors
    Bokhari, S. W.
    Ellis, A., V
    Uceda, M.
    Wei, S.
    Pope, M.
    Zhu, S.
    Gao, W.
    Sherrell, P. C.
    JOURNAL OF ENERGY STORAGE, 2022, 56
  • [49] Molten salt synthesis of nitrogen-doped hierarchical porous carbon fromplantain peels for high-performance supercapacitor
    Nanzumani, Nashiru Mahadeen
    Agyemang, Frank Ofori
    Mensah-Darkwa, Kwadwo
    Appiah, Eugene Sefa
    Arthur, Emmanuel Kwesi
    Gikunoo, Emmanuel
    Koomson, Bennetta
    Jadhav, Amol R.
    Raji, Akeem
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 920
  • [50] Cellulose-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitors
    Song, Peng
    Shen, XiaoPing
    He, XiaoMei
    Feng, KaiHui
    Kong, LiRong
    Ji, ZhenYuan
    Zhai, LinZhi
    Zhu, GuoXing
    Zhang, DongYang
    CELLULOSE, 2019, 26 (02) : 1195 - 1208