Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic source

被引:16
作者
Wang, Yifu [1 ,2 ]
Liu, Ji [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
关键词
Chemotaxis; Quasilinear; Boundedness; Logistic source; TIME BLOW-UP; WEAK GLOBAL-SOLUTIONS; CHEMOTAXIS-SYSTEM; EXISTENCE; BEHAVIOR;
D O I
10.1016/j.nonrwa.2017.04.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the quasilinear chemotaxis system {u(t) = del . (D(u)del u) - del . (S(u)del v) + f(u), x is an element of Omega, t > 0, (*) v(t) = del v - v + u, x is an element of Omega, t > 0 (*) in a bounded domain Omega subset of R-n (n >= 2) under zero -flux boundary conditions, where the nonlinearities D, S is an element of C-2 ([0, infinity)) are supposed to generalize the prototypes D(u) = C-D (u + 1)(m-1) and S(u) = C(S)u(u +1)(q-1) with C-D, C-S > 0 and m,q is an element of R, and f is an element of C-1 ([0, infinity)) satisfies f(u) <= r bu(gamma) with r >= 0, b > 0 and gamma > 1. It is shown that if q <{max {m + 2/n-1, m + gamma/2-n - 1/n} for 1 < gamma <= n + 2/n, max {m + 2 gamma/n + 2-1, m/2 + gamma(n + 4)/2(n + 2)-1} for n + 2/n < gamma < n + 2/2, max {m + 2/n - n + 2/n gamma, m/2 + gamma(n + 4)/2(n + 2)-1} for n + 2/2 <= gamma < n + 2, max {m + 1/n, m + gamma/2} for gamma >= n + 2, then (*) unique globally bounded classical solution. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:113 / 130
页数:18
相关论文
共 39 条
[1]   Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source [J].
Cao, Xinru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) :181-188
[2]  
Cidlak T., NONLINEAR ANAL
[3]   Finite-time blow-up in a quasilinear system of chemotaxis [J].
Cieslak, Tomasz ;
Winkler, Michael .
NONLINEARITY, 2008, 21 (05) :1057-1076
[4]   Global bounded solutions in a two-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity [J].
Cieslak, Tomasz ;
Winkler, Michael .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 35 :1-19
[5]   New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models [J].
Cieslak, Tomasz ;
Stinner, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (06) :2080-2113
[6]   Finite-Time Blowup in a Supercritical Quasilinear Parabolic-Parabolic Keller-Segel System in Dimension 2 [J].
Cieslak, Tomasz ;
Stinner, Christian .
ACTA APPLICANDAE MATHEMATICAE, 2014, 129 (01) :135-146
[7]   Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions [J].
Cieslak, Tomasz ;
Stinner, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) :5832-5851
[8]   Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system [J].
Cieslak, Tomasz ;
Laurencot, Philippe .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01) :437-446
[9]  
Herrero M.A., 1997, ANN SCUOLA NORM-SCI, V24, P633
[10]   Boundedness vs. blow-up in a chemotaxis system [J].
Horstmann, D ;
Winkler, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 215 (01) :52-107