Enhanced Ionic Sensitivity in Solution-Gated Graphene-Hexagonal Boron Nitride Heterostructure Field-Effect Transistors

被引:17
作者
Hasan, Nowzesh [1 ]
Hou, Bo [1 ]
Moore, Arden L. [1 ]
Radadia, Adarsh D. [1 ]
机构
[1] Louisiana Tech Univ, Inst Micromfg, Ctr Biomed Engn & Rehabil Serv, Ruston, LA 71272 USA
基金
美国国家卫生研究院;
关键词
hexagonal boron nitride (hBN); ion sensing; solution-gated graphene ion sensitive field-effect transistor (ISFET); QUANTUM CAPACITANCE; EPITAXIAL GRAPHENE; RAMAN-SPECTROSCOPY; CARBON NANOTUBE; SENSORS; SIO2; DEVICES; LIQUID;
D O I
10.1002/admt.201800133
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The charge transport in solution-gated graphene devices is affected by the impurities and disorder of the underlying dielectric interface and its interaction with the solution. Advancement in field-effect ion sensing by fabricating a dielectric isomorph, hexagonal boron nitride between graphene and silicon dioxide of a solution-gated graphene field-effect transistor is being reported. Ionic sensitivity of Dirac voltage as high as -198 mV per decade for K+ and -110 mV per decade for Ca(2+ )is recorded. Increased transconductance due to increased charge carrier mobility is accompanied with larger ionic sensitivity of the transconductance due to larger ionic sensitivity of the charge carrier mobility. These findings define a standard to construct future graphene devices for biosensing and bioelectronics applications.
引用
收藏
页数:8
相关论文
共 62 条
[1]   Screening effect and impurity scattering in monolayer graphene [J].
Ando, Tsuneya .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (07)
[2]   Solution-Gated Epitaxial Graphene as pH Sensor [J].
Ang, Priscilla Kailian ;
Chen, Wei ;
Wee, Andrew Thye Shen ;
Loh, Kian Ping .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (44) :14392-+
[3]   Raman Spectroscopy of Graphene Edges [J].
Casiraghi, C. ;
Hartschuh, A. ;
Qian, H. ;
Piscanec, S. ;
Georgi, C. ;
Fasoli, A. ;
Novoselov, K. S. ;
Basko, D. M. ;
Ferrari, A. C. .
NANO LETTERS, 2009, 9 (04) :1433-1441
[4]   Electrochemical Gate-Controlled Charge Transport in Graphene in Ionic Liquid and Aqueous Solution [J].
Chen, Fang ;
Qing, Quan ;
Xia, Jilin ;
Li, Jinghong ;
Tao, Nongjian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (29) :9908-+
[5]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[6]   Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices [J].
Cheng, Zengguang ;
Zhou, Qiaoyu ;
Wang, Chenxuan ;
Li, Qiang ;
Wang, Chen ;
Fang, Ying .
NANO LETTERS, 2011, 11 (02) :767-771
[7]  
Choi D. S., 2018, ACS APPL MAT INTERFA
[8]   Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons [J].
Christensen, Johan ;
Manjavacas, Alejandro ;
Thongrattanasiri, Sukosin ;
Koppens, Frank H. L. ;
Javier Garcia de Abajo, F. .
ACS NANO, 2012, 6 (01) :431-440
[9]   High-Fidelity Conformation of Graphene to SiO2 Topographic Features [J].
Cullen, W. G. ;
Yamamoto, M. ;
Burson, K. M. ;
Chen, J. H. ;
Jang, C. ;
Li, L. ;
Fuhrer, M. S. ;
Williams, E. D. .
PHYSICAL REVIEW LETTERS, 2010, 105 (21)
[10]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215