Stochastic Kuramoto oscillators with discrete phase states

被引:7
|
作者
Jorg, David J. [1 ,2 ]
机构
[1] Univ Cambridge, Theory Condensed Matter Grp, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[2] Univ Cambridge, Wellcome Trust Canc Res UK Gurdon Inst, Tennis Court Rd, Cambridge CB2 1QN, England
基金
英国惠康基金;
关键词
SYNCHRONIZATION; DIFFERENTIATION; NOISE; CYCLE; MODEL;
D O I
10.1103/PhysRevE.96.032201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Explosive synchronization in interlayer phase-shifted Kuramoto oscillators on multiplex networks
    Kumar, Anil
    Jalan, Sarika
    CHAOS, 2021, 31 (04)
  • [42] Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators
    Giacomin, Giambattista
    Pakdaman, Khashayar
    Pellegrin, Xavier
    NONLINEARITY, 2012, 25 (05) : 1247 - 1273
  • [43] Influence of stochastic perturbations on the cluster explosive synchronization of second-order Kuramoto oscillators on networks
    Cao, Liang
    Tian, Changhai
    Wang, Zhenhua
    Zhang, Xiyun
    Liu, Zonghua
    PHYSICAL REVIEW E, 2018, 97 (02)
  • [44] Kuramoto model of weakly conformed oscillators
    Ly, Hung-Yi
    Kuo, Huan-Yu
    Wu, Kuo-An
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [45] Averaging and Cluster Synchronization of Kuramoto Oscillators
    Kato, Rui
    Ishii, Hideaki
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 1497 - 1502
  • [46] Correlations of the States of Non-Entrained Oscillators in the Kuramoto Ensemble with Noise in the Mean Field
    A. S. Pikovsky
    A. V. Dolmatova
    D. S. Goldobin
    Radiophysics and Quantum Electronics, 2019, 61 : 672 - 680
  • [47] Synchronization of Kuramoto oscillators in dense networks
    Lu, Jianfeng
    Steinerberger, Stefan
    NONLINEARITY, 2020, 33 (11) : 5905 - 5918
  • [48] Effect of higher-order interactions on chimera states in two populations of Kuramoto oscillators
    Kar, Rumi
    Yadav, Akash
    Chandrasekar, V. K.
    Senthilkumar, D. V.
    CHAOS, 2024, 34 (02)
  • [49] Statistics of synchronization times in Kuramoto oscillators
    Sinha, Abhisek
    Ghosh, Anandamohan
    EPL, 2023, 141 (05)
  • [50] Linearization error in synchronization of Kuramoto oscillators
    Ghorban, Samira Hossein
    Baharifard, Fatemeh
    Hesaam, Bardyaa
    Zarei, Mina
    Sarbazi-Azad, Hamid
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 411