Stochastic Kuramoto oscillators with discrete phase states

被引:7
|
作者
Jorg, David J. [1 ,2 ]
机构
[1] Univ Cambridge, Theory Condensed Matter Grp, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[2] Univ Cambridge, Wellcome Trust Canc Res UK Gurdon Inst, Tennis Court Rd, Cambridge CB2 1QN, England
基金
英国惠康基金;
关键词
SYNCHRONIZATION; DIFFERENTIATION; NOISE; CYCLE; MODEL;
D O I
10.1103/PhysRevE.96.032201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Controlling the collective behaviour of networks of heterogenous Kuramoto oscillators with phase lags
    Alderisio, Francesco
    di Bernardo, Mario
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 2248 - 2253
  • [32] Synchronization Thresholds in an Ensemble of Kuramoto Phase Oscillators with Randomly Blinking Couplings
    Barabash, N. V.
    Belykh, V. N.
    RADIOPHYSICS AND QUANTUM ELECTRONICS, 2018, 60 (09) : 761 - 768
  • [33] Fixed-time stochastic synchronization of Kuramoto oscillators subjected to noisy diffusion process
    Wu, Jie
    Liu, Mingqi
    Ma, Ru-ru
    Wang, Xiaofeng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (02):
  • [35] Phase Reduction of Stochastic Biochemical Oscillators
    Bressloff, Paul C.
    MacLaurin, James N.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (01): : 151 - 180
  • [36] Phase behavior in a ring of stochastic oscillators
    Carusela, M. F.
    Romanelli, L.
    ADVANCES IN COMPLEX SYSTEMS, 2008, 11 (01): : 55 - 64
  • [37] Phase computations and phase models for discrete molecular oscillators
    Suvak, Onder
    Demir, Alper
    EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY, 2012, (01):
  • [38] Synchronization of Kuramoto oscillators with time-delayed interactions and phase lag effect
    Hsia, Chun-Hsiung
    Jung, Chang-Yeol
    Kwon, Bongsuk
    Ueda, Yoshihiro
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (12) : 7897 - 7939
  • [39] Learning and Phase Tracking by Frequency and Weight Adaptation for Coupled Networks of Kuramoto Oscillators
    Alanazi, Faizah J.
    Mueller, Markus
    Townley, Stuart
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2025, 24 (01): : 68 - 93
  • [40] Exponential Cluster Phase Synchronization Conditions for Second-Order Kuramoto Oscillators
    Wu, Liang
    Chen, Haoyong
    Bashir, Tasarruf
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (03) : 1238 - 1242