Stochastic Kuramoto oscillators with discrete phase states

被引:7
|
作者
Jorg, David J. [1 ,2 ]
机构
[1] Univ Cambridge, Theory Condensed Matter Grp, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[2] Univ Cambridge, Wellcome Trust Canc Res UK Gurdon Inst, Tennis Court Rd, Cambridge CB2 1QN, England
基金
英国惠康基金;
关键词
SYNCHRONIZATION; DIFFERENTIATION; NOISE; CYCLE; MODEL;
D O I
10.1103/PhysRevE.96.032201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Stabilization for Stochastic Coupled Kuramoto Oscillators via Nonlinear Distributed Feedback Control
    Kang, Rui
    Gao, Shang
    MATHEMATICS, 2022, 10 (18)
  • [22] Universality of synchrony: Critical behavior in a discrete model of stochastic phase-coupled oscillators
    Wood, K
    Van den Broeck, C
    Kawai, R
    Lindenberg, K
    PHYSICAL REVIEW LETTERS, 2006, 96 (14)
  • [23] On Exponential Synchronization of Kuramoto Oscillators
    Chopra, Nikhil
    Spong, Mark W.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (02) : 353 - 357
  • [24] Emergence of Phase-Locking in the Kuramoto Model for Identical Oscillators with Frustration
    Ha, Seung-Yeal
    Ko, Dongnam
    Zhang, Yinglong
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (01): : 581 - 625
  • [25] Synchronization Thresholds in an Ensemble of Kuramoto Phase Oscillators with Randomly Blinking Couplings
    N. V. Barabash
    V. N. Belykh
    Radiophysics and Quantum Electronics, 2018, 60 : 761 - 768
  • [26] Adaptive Hybrid Control for Robust Global Phase Synchronization of Kuramoto Oscillators
    Bosso, Alessandro
    Azzollini, Ilario A.
    Baldi, Simone
    Zaccarian, Luca
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (12) : 8188 - 8203
  • [27] Effects of synaptic and myelin plasticity on learning in a network of Kuramoto phase oscillators
    Karimian, M.
    Dibenedetto, D.
    Moerel, M.
    Burwick, T.
    Westra, R. L.
    De Weerd, P.
    Senden, M.
    CHAOS, 2019, 29 (08)
  • [28] Complete synchronization of Kuramoto oscillators
    Lunze, Jan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (42)
  • [29] On the Critical Coupling for Kuramoto Oscillators
    Doerfler, Florian
    Bullo, Francesco
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2011, 10 (03): : 1070 - 1099
  • [30] SYNCHRONIZATION ANALYSIS OF KURAMOTO OSCILLATORS
    Dong, Jiu-Gang
    Xue, Xiaoping
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2013, 11 (02) : 465 - 480